StandardSpecificationfor
DecorativeElectroplatedCoatingsofCopperPlusNickelPlusChromiumonPlastics1ThisstandardisissuedunderthefixeddesignationB604;thenumberimmediatelyfollowingthedesignationindicatestheyearoforiginaladoptionor,inthecaseofrevision,theyearoflastrevision.Anumberinparenthesesindicatestheyearoflastreapproval.Asuperscriptepsilon(´)indicatesaneditorialchangesincethelastrevisionorreapproval.
1.Scope
1.1Thisspecificationcoverstherequirementsforseveralgradesandtypesofelectrodepositedcopperplusnickelpluschromiumcoatingsonplateableplasticsubstrateswhereap-pearance,durabilityandresistancetothermalcyclingareimportanttoserviceperformance.Fivegradesofcoatingsareprovidedtocorrelatewiththeserviceconditionsunderwhicheachisexpectedtoprovidesatisfactoryperformance.
1.2Thisspecificationcoverstherequirementsforcoatingsappliedsubsequenttotheapplicationofmetalfilmbyauto-catalyticdepositionorsubsequenttotheapplicationofanystrikecoatingsafterautocatalyticdeposition.
1.3ThefollowingcaveatpertainsonlytothetestmethodportionsofSection6,AnnexA1,andAppendixX2,AppendixX3,andAppendixX4ofthisspecification.Thisstandarddoesnotpurporttoaddressallofthesafetyconcerns,ifany,associatedwithitsuse.Itistheresponsibilityoftheuserofthisstandardtoestablishappropriatesafetyandhealthpracticesanddeterminetheapplicabilityofregulatorylimitationspriortouse.
2.ReferencedDocuments2.1ASTMStandards:2B368TestMethodforCopper-AcceleratedAceticAcid-SaltSpray(Fog)Testing(CASSTest)
B487TestMethodforMeasurementofMetalandOxideCoatingThicknessbyMicroscopicalExaminationofCrossSection
B489PracticeforBendTestforDuctilityofElectrodepos-itedandAutocatalyticallyDepositedMetalCoatingsonMetals
B504TestMethodforMeasurementofThicknessofMe-tallicCoatingsbytheCoulometricMethod
B530TestMethodforMeasurementofCoatingThick-nessesbytheMagneticMethod:ElectrodepositedNickelCoatingsonMagneticandNonmagneticSubstrates
B532SpecificationforAppearanceofElectroplatedPlasticSurfaces
B533TestMethodforPeelStrengthofMetalElectroplatedPlastics
B556GuideforMeasurementofThinChromiumCoatingsbySpotTest
B567TestMethodforMeasurementofCoatingThicknessbytheBetaBackscatterMethod
B568TestMethodforMeasurementofCoatingThicknessbyX-RaySpectrometry
B602TestMethodforAttributeSamplingofMetallicandInorganicCoatings
B659GuideforMeasuringThicknessofMetallicandInorganicCoatings
B727PracticeforPreparationofPlasticsMaterialsforElectroplating
B764TestMethodforSimultaneousThicknessandElec-trodePotentialDeterminationofIndividualLayersinMultilayerNickelDeposit(STEPTest)D1193SpecificationforReagentWater
E50PracticesforApparatus,Reagents,andSafetyConsid-erationsforChemicalAnalysisofMetals,Ores,andRelatedMaterials
3.Terminology3.1Definitions:
3.1.1significantsurfaces—thosesurfacesnormallyvisible(directlyorbyreflection)thatareessentialtotheappearanceorserviceabilityofthearticlewhenassembledinnormalpositionorthatcanbethesourceofcorrosionproductsthatdefacevisiblesurfacesontheassembledarticle.
4.Classification
4.1Fivegradesofcoatingsdesignatedbyserviceconditionnumbersandseveraltypesofcoatingsdefinedbyclassificationnumbersarecoveredbythisspecification.4.2ServiceConditionNumber:
4.2.1Theserviceconditionnumberindicatestheseverityofexposureforwhichthegradeofcoatingisintended,inaccordancewiththefollowingscale:
ThisspecificationisunderthejurisdictionofASTMCommitteeB08onMetallicandInorganicCoatingsandisthedirectresponsibilityofSubcommitteeB08.08.03onDecorativeCoatings.
CurrenteditionapprovedAug.1,2008.PublishedSeptember2008.Originallyapprovedin1975.Lastpreviouseditionapprovedin2003asB604–91(2003).2ForreferencedASTMstandards,visittheASTMwebsite,www.astm.org,orcontactASTMCustomerServiceatservice@astm.org.ForAnnualBookofASTMStandardsvolumeinformation,refertothestandard’sDocumentSummarypageontheASTMwebsite.
1Copyright©ASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.
--`,,```,,,,````-`-`,,`,,`,`,,`---
Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
1
Not for Resale
B604–91(2008)
SC5—extendedverysevereSC4—verysevereSC3—severeSC2—moderateSC1—mild
4.2.2ServiceconditionnumbersarefurtherdefinedinAppendixX1wheretheyarerelatedtotheseverityofexposureencounteredbyelectroplatedarticles.
4.3CoatingClassificationNumber—Thecoatingclassifi-cationnumberisameansofspecifyingthetypesandthick-nessesofcoatingsappropriateforeachgradeandiscomprisedofthefollowing:
4.3.1Thesymbolforthesubstrate(PL)indicatingitisplateableplastic,followedbyaslashmark,4.3.2Thechemicalsymbolforcopper(Cu),
4.3.3Anumbergivingtheminimumthicknessofthecoppercoatinginmicrometres,
4.3.4Alower-caseletterdesignatingthetypeofcopperelectrodeposit(see4.4and6.3.1),
4.3.5Thechemicalsymbolfornickel(Ni),
4.3.6Anumbergivingtheminimumthicknessofthenickelinmicrometres,
4.3.7Alower-caseletterdesignatingthetypeofnickelelectrodeposit(see4.4and6.3.2),
4.3.8Thechemicalsymbolforchromium(Cr),and
4.3.9Alower-caseletterorlettersdesignatingthetypeofchromium(see4.4and6.3.3).
4.4SymbolsforExpressingClassification—Thefollowinglower-caselettersshallbeusedincoatingclassificationnum-berstodescribethetypesofcoatings:
a—ductilecopperdepositedfromacid-typebaths
b—single-layernickeldepositedinthefully-brightconditiond—double-ortriple-layernickelcoatingsr—regular(thatis,conventional)chromiummc—microcrackedchromiummp—microporouschromium
4.5ExampleofCompleteClassificationNumber—Acoat-ingonplasticcomprising15µmminimumductileacidcopperplus15µmminimumdouble-layernickelplus0.25µmminimummicroporouschromiumhastheclassificationnum-ber:PL/Cu15aNi15dCrmp.
5.OrderingInformation
5.1Whenorderingarticlestobeelectroplatedinaccordancewiththisstandard,thepurchasershallstatethefollowing:5.1.1ASTMdesignationnumber.
5.1.2Eithertheclassificationnumberofthespecificcoat-ingrequired(see4.3)orthesubstratematerialandtheserviceconditionnumberdenotingtheseverityoftheconditionsitisrequiredtowithstand(see4.2).Iftheserviceconditionnumberisquotedandnottheclassificationnumber,themanufacturerisfreetosupplyanyofthetypesofcoatingsdesignatedbytheclassificationnumbercorrespondingtotheserviceconditionnumber,asgiveninTable1.3Onrequest,themanufacturershallinformthepurchaseroftheclassificationnumberofthecoatingapplied.
5.1.3Theappearancerequired,forexample,bright,dull,orsatin.Alternatively,samplesshowingtherequiredfinishorrangeoffinishshallbesuppliedorapprovedbythepurchaser.5.1.4Thesignificantsurfaces,tobeindicatedondrawingsoftheparts,orbytheprovisionofsuitablymarkedspecimens(see3.1).
5.1.5Thepositionsonsignificantsurfacesforrackorcontactmarks,wheresuchmarksareunavoidable(see6.1.1).5.1.6Theextenttowhichdefectsshallbetoleratedonnonsignificantsurfaces.
5.1.7Theductilityifotherthanthestandardvalue(see6.4).5.1.8Theextentoftolerablesurfacedeteriorationaftercorrosiontesting(see6.6.3).
5.1.9Samplingmethodsandacceptancelevels(SeeSection7).
5.1.10Whetherthermalcycleandcorrosiontestingshallbeconductedindividuallyonseparatespecimensasdescribedin6.6and6.7,orsequentiallyusingthesamespecimensasdescribedin6.8,andwhetherthespecimensshallbeun-mountedormountedinamannersimulatingassemblywhenthesetestsareconducted.
5.2TheminimumvaluesoftheelectrochemicalpotentialdifferencesbetweenindividualnickellayersasmeasuredinaccordancewithTestMethodB764withinthelimitsgivenin6.10.
6.ProductRequirements6.1VisualDefects:
6.1.1Thesignificantsurfacesoftheelectroplatedarticlesshallbefreeofvisibledefects,suchasblisters,pits,roughness,cracks,anduncoatedareas,andshallnotbestainedordiscolored.Onarticleswhereavisiblecontactmarkisun-avoidable,itspositionshallbespecifiedbythepurchaser.Theelectroplatedarticleshallbefreeofdamageandclean.
6.1.2Defectsinthesurfaceofthemoldedplastic,suchascoldshots,ejectionmarks,flash,gatemarks,partinglines,splayandothers,mayadverselyaffecttheappearanceandperformanceofcoatingsappliedtheretodespitetheobservance
TABLE1CopperPlusNickelPlusChromiumCoatingson
PlasticAServiceConditionNumberSC5SC4
EquivalentNickelThickness
ClassificationNumber
µm
PL/Cu15aPL/Cu15aPL/Cu15aPL/Cu15aPL/Cu15aPL/Cu15aPL/Cu15aPL/Cu15aPL/Cu15aPL/Cu15aPL/Cu15aPL/Cu15a
Ni30dCrmcNi30dCrmpNi30dCrrNi25dCrmcNi25dCrmpNi25dCrrNi20dCrmcNi20dCrmpNi15bCrrNi10bCrmcNi10bCrmpNi7bCrr
30303025252520201510107
mils(approx.)
1.21.21.21.01.01.00.80.80.60.40.40.3
SC3
SC2
SC1
ATheminimumcopperthicknessmaybegreaterinsomeapplicationstomeetthermalcyclingandotherrequirements.
“PerformanceofDecorativeElectrodepositedCopper-Nickel-ChromiumCoat-ingsonPlastics”isafinalreportonprogramsconductedbyASTMandASEPtoevaluatethecoatingclassificationnumbers.AcopyofthereporthasbeenfiledatASTMHeadquartersasRRB-8-1003.
3Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
2
Not for Resale
--`,,```,,,,````-`-`,,`,,`,`,,`---B604–91(2008)
ofthebestelectroplatingpractice.Accordingly,theelectroplat-preparedtestspecimens.SeeAppendixX2forthedeterminationofsulfurer’sresponsibilityfordefectsinthecoatingresultingfromtheinelectrodepositednickel.
plastic-moldingoperationshallbewaived(Note1).
NOTE3—ItwillusuallybepossibletoidentifythetypeofnickelbymicroscopicalexaminationofthepolishedandetchedsectionofanarticleNOTE1—Tominimizeproblemsofthistype,thespecificationscover-preparedinaccordancewithTestMethodB487.Thethicknessoftheingtheitemstobeelectroplatedshouldcontainappropriatelimitationsonindividualnickellayersindouble-layerandtriple-layercoatings,aswelltheextentofsurfacedefects.PracticeB532distinguishesbetweendefectsastheelectrochemicalrelationshipsbetweentheindividuallayerscanbethatariseprimarilyinmoldingandthosethatariseinelectroplatingmeasuredbytheSTEPtestinaccordancewithTestMethodB764.
operations.
6.4Ductility—Theminimumvalueoftheductilityshallbe6.2Pretreatments—Properpreparatoryproceduresarees-8%forcopperandfornickelwhentestedbythemethodgivensentialforsatisfactoryperformanceofelectrodepositedcoat-inAppendixX3.Greaterductilitymayberequestedbutshallingsonplastics.ProceduresdescribedinPracticeB727maybesubjecttoagreementbetweenthepurchaserandthemanu-befollowed.Inthecaseofpatentedprocesses,theinstructionsfacturer.
providedbythesuppliersofthoseprocessesshallbefollowed.6.5CoatingThickness:
6.3ProcessandCoatingRequirements—Followingprepa-6.5.1Theminimumcoatingthicknessshallbeasdesignatedratoryoperations,plasticarticlesareplacedinelectroplatingbythecoatingclassificationnumber.
solutionsasrequiredtoproducethecompositecoatingde-6.5.2Itisrecognizedthatrequirementsmayexistforthickerscribedbythespecificcoatingclassificationnumberorbycoatingsthanarecoveredbythisspecification.
coatingoneofthespecifiedclassificationnumberslistedin6.5.3ThethicknessofacoatinganditsvariouslayersshallTable1appropriateforthespecifiedserviceconditionnumber.bemeasuredatpointsonthesignificantsurfaces(see4.2and6.3.1TypeofCopper—DuctilecoppershallbedepositedNote4.)
fromacid-typebathscontainingorganicadditivesthatpromotelevelingbythecopperdeposit.
NOTE4—Whensignificantsurfacesareinvolvedonwhichthespecified6.3.2TypeofNickel—Fordouble-ortriple-layernickelthicknessofdepositcannotreadilybecontrolled,suchasthreads,holes,coatings,thebottomlayershallcontainlessthan0.005mass%deeprecesses,basesofangles,andsimilarareas,thepurchaserandthemanufacturershouldrecognizethenecessityforeitherthickerdepositsonsulfur(Note2).Thetoplayershallcontaingreaterthan0.04themoreaccessiblesurfacesorforspecialracking.Specialracksmaymass%sulfur(Note3),anditsthicknessshallbenotlessthaninvolvetheuseofconforming,auxiliary,orbipolarelectrodes,or10%ofthetotalnickelthickness.Indouble-layercoatings,thenonconductingshields.
thicknessofthebottomlayershallbenotlessthan60%ofthe6.5.3.1ThecoulometricmethoddescribedinTestMethodtotalnickelthickness.Intriple-layercoatings,thebottomlayerB504maybeusedtomeasurethicknessofthechromium,theshallbenotlessthan50%normorethan70%.Iftherearetotalthicknessofthenickel,andthethicknessofthecopper.threelayers,theintermediatelayershallcontainnotlessthanTheSTEPtest,TestMethodB764,whichissimilartothe0.15mass%sulfurandshallnotexceed10%ofthetotalcoulometricmethod,maybeusedtodeterminethethicknessesnickelthickness.Theserequirementsformultilayernickelofindividuallayersofnickelinamultilayercoating.
coatingsaresummarizedinTable2.
6.5.3.2ThemicroscopicalmethoddescribedinTestMethod6.3.3ThicknessofChromiumDeposit—Theminimumper-B487maybeusedtomeasurethethicknessofeachnickelmissiblethicknessofthechromiumdepositshallbe0.25µmonlayerandofthecopperlayer.
significantsurfaces.Thethicknessofchromiumisdesignated6.5.3.3ThebetabackscattermethoddescribedinTestbythesamesymbolasthetypeinsteadofbynumeralsasintheMethodB567maybeusedwhenthetotalthicknessofacaseofcopperandnickel(see4.4).
copper/nickel/chromiumcompositecoatingistobemeasured,NOTE2—Thesulfurcontentisspecifiedinordertoindicatewhichtypewithoutanyindicationofthethicknessofeachindividuallayer.ofnickelelectroplatingsolutionmustbeused.Althoughnosimplemethod6.5.3.4Othermethodsmaybeusedifitcanbedemon-isyetavailablefordeterminingthesulfurcontentofanickeldepositonastratedthattheuncertaintyofthemeasurementislessthancoatedarticle,chemicaldeterminationsarepossibleusingspecially
10%,orlessthanthatofanyapplicablemethodmentionedin6.4.3.OthermethodsareoutlinedinTestMethodsB530andB568andGuidesB556andB659.TABLE2SummaryoftheRequirementsforDouble-andTriple-LayerNickelCoatings
6.6CorrosionTesting:
6.6.1CoatedarticlesshallbesubjectedtothecorrosiontestLayerTypeof
Specific
ThicknessRelativetoTotal
foraperiodoftimethatisappropriatefortheparticularserviceNickelElongationSulfurContent
NickelThicknessconditionnumber(orfortheserviceconditionnumbercorre-Double-LayerTriple-Layerspondingtoaspecifiedclassificationnumber)asshowninBottom(s)
8%
lessthanequaltoorequaltoor0.005%
greaterthangreaterthanTable3.ThetestisdescribedindetailinthereferencedASTM50%50%
standard.
Middle(high-sulfur...greaterthan
...
10%max(b))0.15mass%
NOTE5—Thereisnodirectrelationbetweentheresultsofanacceler-Top(b)...
greaterthanequaltoorequaltooratedcorrosiontestandtheresistancetocorrosioninothermediabecause0.04%greaterthan
greaterthanseveralfactors,suchastheformationofprotectivefilms,influencethe40%
40%
progressofcorrosionandvarygreatlywiththeconditionsencountered.TestMethod
AppendixX3A...
BTheresultsobtainedinthetestshould,therefore,notberegardedasaASeeNote2inthetextofthisspecification.
directguidetothecorrosionresistanceofthetestedmaterialsinallBSeeNote3inthetextofthisspecification.
environmentswherethesematerialsmaybeused.Also,performanceof
Copyright ASTM International
3
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
Not for Resale
---`,,`,`,,`,,`-`-````,,,,```,,`--B604–91(2008)
TABLE3CorrosionTestsAppropriateforEachService
ConditionNumber
ServiceConditionNumber
SCSCSCSCSC
ABDurationofCorrosion(CASS)TestAthree16-hcyclesBtwo16-hcyclesBone16-hcycleB8h...
54321
SeeMethodB368.
Each16-hCASStestcycleshallconsistof16hofexposurefollowedbyremovalfromthetestcabinet,rinsinginwater,andinspection.Thetestspecimenshallnotbeoutofthetestcabinetformorethan8hbetweencycles.
differentmaterialsinthetestcannotalwaysbetakenasadirectguidetotherelativecorrosionresistanceofthesematerialsinservice.
6.6.2Aftersubjectingthearticletothetreatmentdescribedintherelevanttestmethod,itshallbeexaminedforevidenceofcorrosionpenetrationtothesubstrateorthecopperlayer,andforblisteringofthecoating.Anyevidenceofcoppercorrosion,blisteringofthecoating,orsubstrateexposureshallbecauseforrejection.Itistobeunderstoodthatoccasionalwidelyscatteredcorrosiondefectsmaybeobservedafterthetestingperiod.Ingeneral,“acceptableresistance”shallmeanthatsuchdefectsarenot,whenviewedcritically,significantlydefacingorotherwisedeleterioustothefunctionoftheelectroplatedpart.
6.6.3Surfacedeteriorationofthecoatingitselfisexpectedtooccurduringthetestingofsometypesofcoatings.Theextenttowhichsuchsurfacedeteriorationwillbetoleratedshallbespecifiedbythepurchaser.6.7ThermalCycleTesting:
6.7.1CoatedarticlesshallbesubjectedtothreecyclesofthethermalcycletestasoutlinedinAnnexA1.Thespecifiedserviceconditionnumberofthecoating(ortheserviceconditionnumbercorrespondingtothespecifiedclassificationnumber)shallcorrespondtotheserviceconditionnumberinAnnexA1fordeterminingthetemperatureextremesasout-linedtherein.
6.7.2Afterhavingbeensubjectedtothreecyclesoftheappropriatethermalcycletest,thecoatedarticleshallshownovisibledefects,suchascracking,blistering,peeling,sinkmarks,anddistortions.
NOTE6—Thereisnodirectrelationbetweentheresultsofthermalcycletestingandperformanceinservice,becauseitisnotalwayspossibletopredictandcontrolthethermalexposureofthecoatedarticleinserviceorduringstorage.Therefore,theresultsofthermalcyclingshouldbeusedtocontrolthequalityofelectroplatedplasticarticlesandnotasdirectguidetoperformanceinservice.
6.8.4SubjecttheelectroplatedarticlestothethermalcycletestproceduregiveninAnnexA1.
6.8.5Steps6.8.2through6.8.4representonecycleofcombinedthermalcycleandcorrosiontesting.ForarticleselectroplatedtoSC5orSC4,repeatfortwoadditionaltimes.ForarticleselectroplatedtoSC3,repeatoneadditionaltime.6.8.6Coatedarticlesshallbeexaminedfordefectsaftereachcycleofcombinedthermalcycle-corrosiontestingasindicatedin6.6.2and6.7.2.
6.9Adhesion—TestMethodB533providesaprocedureformeasurementofthepeelstrength(adhesion)ofmetal-electroplatedplasticsusingstandardspecimens.Sincethereisnodirectcorrelationbetweenresultsobtainedonstandardspecimensandactualmoldedparts,themethodisusefultodeterminethatprocessingsolutionsarecapableofgivingacceptableresults.Thethermalcycletestdescribedin6.7andthesubsequentexaminationoftheelectroplatedarticlesde-scribedin6.7.2,oralternatively,thecombinedthermalcycletestdescribedin6.7.2,oralternatively,thecombinedthermalcycleandcorrosiontestsdescribedin6.8,arerecommendedinsteadofothertests.
6.10STEPTestRequirement:
6.10.1TheelectrochemicalpotentialdifferencesbetweenindividualnickellayersshallbemeasuredformultilayercoatingscorrespondingtoSC5,SC4,andSC3inaccordancewithTestMethodB764(STEPtest).SeeNote7.
NOTE7—UniversallyacceptedSTEPvalueshavenotbeenestablishedbutsomeagreementexistsfortherequiredranges.TheSTEPvaluesdependonwhichtwonickellayersarebeingmeasured:(a)theSTEPpotentialdifferencebetweenthesemi-brightnickellayerandthebrightnickellayeriswithintherangeof100to200mV.Forallcombinationsofnickellayers,thesemi-brightnickellayerismorenoble(cathodic)thanthebrightnickel;(b)theSTEPpotentialdifferencebetweenthehigh-activitynickellayerandthebrightnickellayerintriple-layernickelcoatingsiswithintherangeof15to35mV.Thehigh-activitylayerismoreactive(anodic)thanthebrightnickellayer;and(c)theSTEPpotentialdifferencebetweenthebrightnickellayerandanickellayerbetweenthebrightnickellayerandthechromiumlayeriswithin0to30mV.Thebrightnickellayerismoreactive(anodic)thanthenickellayerappliedpriortothechromium.
6.8CombinedThermalCycleandCorrosionTesting:
6.8.1Corrosiontestingmaybecombinedwiththermalcycletestingforarticleselectroplatedaccordingtotherequire-mentsofSC5,SC4,andSC3byusingthesamecoatedarticlesineachtestinsequenceasdescribedinthissection.Theuseofcombinedthermalcycleandcorrosiontestingobviatestheneedtoconducttheindividualtestsdescribedin6.6and6.7.
6.8.2Exposethecoatedarticlestoone16-hcycleaccordingtotheproceduresoutlinedinMethodB368(CASStest).6.8.3PartsshallberinsedwithdemineralizedwateronlyaftereachCASStestcycle.
Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
--`,,```,,,,```6.11SulfurContent:
6.11.1Thesulfurcontentofthenickeldepositshallmeetthemaximumorminimumvaluesasstatedin6.3.2andTable2.6.11.2MethodsforsulfurdeterminationsaregiveninAp-pendixX2.
6.12DensityandMeasurementofDiscontinuitiesinChro-mium:
6.12.1Thedensityofcracksorporesinmicrocrackedormicroporouschromiumdepositsshallmeetminimumvalues.Microcrackedchromiumshallhavemorethan30cracks/mminanydirectionoverthewholeofthesignificantsurface.Mi-croporouschromiumshallcontainaminimumof100pores/mm2inanydirectionoverthewholeofthesignificantsurface.Thecracksandporesshallbeinvisibletotheunaidedeye.6.12.2MethodsformeasuringthediscontinuitiesaregiveninAppendixX4.SeeX4.4forameansofdeterminingcorrosionsitesbycorrosiontesting.
4
Not for Resale
B604–91(2008)
7.SamplingRequirement
7.1ArandomsampleofthesizerequiredbyTestMethodB602shallbeselectedfromtheinspectionlot(see7.2).Thearticlesinthelotshallbeinspectedforconformancetotherequirementsofthisspecificationandthelotshallbeclassifiedasconformingornotconformingtoeachrequirementaccord-ingtothecriteriaofthesamplingplansinTestMethodB602.
NOTE8—TestMethodB602containsthreesamplingplansfortheoriginalinspectionofcoatedarticles.Twoaretobeusedwherethetestmethodsarenondestructive,thatis,thetestmethoddoesnotmakethearticlenonconforming.Thethirdplanisusedwherethetestmethodisdestructive.Ifitisnotclearifthetestisdestructiveornot,thepurchasershouldidentifywhichtestmethodsaredestructive,andwhicharenondestructive.Insomeinstances,bothnondestructiveanddestructivetestmethodsmayexistforthetestingoftheconformanceofacoatingtoaparticularrequirement.Thepurchasershouldstatewhichistobeused.
7.2Aninspectionlotshallbedefinedasacollectionofcoatedarticlesthatareofthesamekind,thathavebeenproducedtothesamespecifications,thathavebeencoatedbyasinglesupplieratonetime,oratapproximatelythesametime,underessentiallyidenticalconditions,andthataresubmittedforacceptanceorrejectionasagroup.
7.3Ifseparatetestspecimensareusedtorepresentthecoatedarticlesinatest,thespecimensshallbeofthenature,size,andnumberandbeprocessedasrequiredinAnnexA1andAppendixX2,AppendixX3,andAppendixX4.Unlessaneedcanbedemonstrated,separatelypreparedspecimensshallnotbeusedinplaceofproductionitemsfornondestructivetestsandvisualexamination.Fordestructivetestsincludingdeterminationofductility,sulfurcontent,thenumberofdiscontinuities,thermalcycleandcorrosiontesting,andSTEPtesting,separatelypreparedspecimensmaybeused.
ANNEX
(MandatoryInformation)
A1.ThermalCyclingofElectroplatedPlastics
NOTEA1.1—Thistestmethodisusedtoensurecomplianceofelectro-platedplasticswiththethermalcyclerequirementsgivenin6.7and6.8.
A1.1Apparatus—Theapparatusshallconsistofacirculat-ingairheatingchamberandcoolingchambersufficientlypowered,insulated,andcontrolledtocloselymaintainthepresettemperature.Thetwochambersmaybeseparate,ormaybebuiltsoastoconstituteasinglechamber.Thecontrollerandrecorderusedforchambercontrol,calibration,andrecordsshallbeaccurateto61°C.Allpointswithintheworkingareaofthetestchambershallremainwithin63°Cofthesettemperature.Theaircirculationshallbecontrolledtopermitaconsistentrateofheatingorcoolingofthepartsduringthetest.A1.2ElapsedTimeAfterElectroplating—Theelapsedtimebetweencompletionoftheelectroplatingoperationandthermalcycletestingmayinfluencetheresults.Theelapsedtimeshallbe2462h.
A1.3Procedure:
A1.3.1Partsmaybeintroducedintothechamberun-mounted,ormountedinamannersimulatingassemblyasspecifiedbythepurchaser.
A1.3.2Loadthechamberwiththedesiredquantityofpartstobetested.
A1.3.3Recordthelocationofpartswithinthechamber,theloadingandthesizeofthepartsbeingtested.
A1.3.4ThethermalcycletemperaturelimitscorrespondingtothespecifiedserviceconditionnumbershallbechosenfromTableA1.1.
A1.3.5Eachthermalcycleshallconsistofeitherplacingthesamplesinaroom-temperaturechamberandheatingthechambertothehighlimit,orplacingthesamplesdirectlyintoachamberatthehighlimit,andperformingthefollowing:A1.3.5.1Exposethepartsforonehouratthehighlimit.A1.3.5.2Allowthepartstoreturnto2063°Candmaintainatthistemperaturefor1h.Thisisfrequentlyaccomplishedbyremovingthepartsfromthechamber.
A1.3.5.3Exposethepartsforonehouratthelowlimit.A1.3.5.4Allowthepartstoreturnto2063°Candmaintainatthistemperaturefor1h.StepsA1.3.5.1throughA1.3.5.4constituteonefullthermalcycle.
A1.3.6Whenthenumberofcyclesspecifiedin6.7and6.8hasbeencompleted,inspectthepartsforcoatingdefectsproducedbythermalcycling.SeeSpecificationB532,Table1,forthelimitsestablishedforvisualdefects.
A1.4RecordingofTestResults—Therecordingofthetestresultsshallincludethefollowing:
TABLEA1.1RecommendedThermalCyclingTemperatureLimits
ServiceConditionNumber
SC5SC4SC3SC2SC1
—————
ExtendedverysevereVerysevereSevereModerateMild
TemperatureLimits,°CHigh8580807560
Low−40−40−30−30−30
--`,,```,,,,````-`-`,,`,,`,`,,`---
Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
5
Not for Resale
B604–91(2008)
A1.4.1AstatementthatthetestwasperformedaccordingtoSpecificationB604,AnnexA1.
A1.4.2Theserviceconditionnumberforwhichthepartwastested.
A1.4.3Thetrayconstruction(ifatrayisused)andchamberloading.
A1.4.4Thelastcalibrationdateofthecontrollerandrecords.
A1.4.5Theextent,nature,andlocationofthedefects.A1.5PrecisionandBias—Theprecisionandbiasofthistestmethodhavenotbeenestablished.
APPENDIXES
(NonmandatoryInformation)
X1.DEFINITIONSANDEXAMPLESOFSERVICECONDITIONSFORWHICHTHEVARIOUSSERVICE
CONDITIONNUMBERSAREAPPROPRIATE
X1.1ServiceConditionNo.SC5(ExtendedVerySevere)—Serviceconditionsthatincludelikelydamagefromdenting,scratching,andabrasivewearinadditiontoexposuretocorrosiveenvironmentswherelong-termprotectionofthesubstrateisrequired;forexample,conditionsencounteredbysomeexteriorcomponentsofautomobiles.
X1.2ServiceConditionNo.SC4(VerySevere)—Serviceconditionsthatincludelikelydamagefromdenting,scratching,andabrasivewearinadditiontoexposuretocorrosiveenvi-ronments;forexample,conditionsencounteredbyexteriorcomponentsofautomobilesandbyboatfittingsinsaltwaterservice.
X1.3ServiceConditionNo.SC3(Severe)—Exposurethatislikelytoincludeoccasionalorfrequentwettingbyrainordeworpossiblystrongcleanersandsalinesolutions;forexample,conditionsencounteredbyporchandlawnfurniture,bicycleandperambulatorparts,hospitalfurnitureandfixtures.X1.4ServiceConditionNo.SC2(Moderate)—Indoorexposureinplaceswherecondensationofmoisturemayoccur;forexample,inkitchensandbathrooms.
X1.5ServiceConditionNo.SC1(Mild)—Indoorexposureinnormallywarm,dryatmosphereswithcoatingsubjecttominimumwearorabrasion.
X2.DETERMINATIONOFSULFURINELECTRODEPOSITEDNICKEL
Thefollowingtwomethodsforthedeterminationofsulfurinelectroplatednickelaregivenasguidelinesforusetotestcomplianceofthetypeofnickeldepositwiththeappropriatedefinitiongivenin6.3.2.Theyrepresentmethodsthathavebeenusedwithsuccesscommercially;theyarenotASTMstandards,norisittheintentinpublishingthesemethodstoprecludetheuseofothermethodsorvariationsinthesemethods.
X2.1TotalSulfurinElectroplatedNickelby
Combustion-IodateTitration
X2.1.1Scope—Thismethodcoversthedeterminationofsulfurinconcentrationsfrom0.005to0.5mass%.
X2.1.2SummaryofMethod—Amajorpartofthesulfurinthesampleisconvertedtosulfurdioxide(SO2)bycombustioninastreamofoxygenusinganinductionfurnace.Duringthecombustion,theSO2isabsorbedinanacidifiedstarch-iodidesolutionandtitratedwithpotassiumiodatesolution.Thelatterisstandardizedagainststeelsofknownsulfurcontenttocompensateforcharacteristicsofagivenapparatusandforday-to-dayvariationinthepercentageofsulfurrecoveredasSO2.Compensationismadefortheblankbecauseofaccelera-torsandcrucibles.
NOTEX2.1—Instrumentsareavailableformeasuringthesulfurdioxidefromcombustionbyinfrareddetectionmethodsandusingbuilt-incomputerstointegrateanddisplaythesulfurcontentasapercentage.
--`,,```,,,,````-`-`,,`,,`,`,,`---X2.1.3Interferences—Theelementsordinarilypresentinelectroplatednickeldonotinterfere.
X2.1.4Apparatus—Inductionheatingapparatusfordeter-minationofsulfurbydirectcombustionasdescribedinPracticesE50(ApparatusNo.13).X2.1.5Reagents:
X2.1.5.1PurityofReagents—Reagentgradechemicalsshallbeusedinalltests.Unlessotherwiseindicated,itisintendedthatallreagentsshallconformtothespecificationsoftheCommitteeonAnalyticalReagentsoftheAmericanChemi-calSociety,wheresuchspecificationsareavailable.4Othergradesmaybeused,provideditisfirstdeterminedthatthereagentisofsufficientlyhighpuritytopermititsusewithoutlesseningtheaccuracyofthedetermination.
X2.1.5.2PurityofWater—Unlessotherwiseindicated,referencetowatershallbeunderstoodtomeanreagentwaterconformingtoSpecificationD1193.
X2.1.5.3HydrochloricAcid(3+97)—Mix3volumesofconcentratedhydrochloricacid(HCl)(spgr1.19)with97volumesofwater.
X2.1.5.4Iron(Low-Sulfur)Accelerator—Chips.
“ReagentChemicals,AmericanChemicalSocietySpecifications,”Am.Chemi-calSoc.,Washington,DC.ForsuggestionsonthetestingofreagentsnotlistedbytheAmericanChemicalSociety,see“ReagentChemicalsandStandards,”byJosephRosin,D.VanNostrandCo.,NewYork,NY,andthe“UnitedStatesPharmacopeia.”
4Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
6
Not for Resale
B604–91(2008)
X2.1.5.5Iron(Low-Sulfur)Accelerator—Powder.
X2.1.5.6PotassiumIodate,StandardSolutionA(1mL=0.1mgS)—Dissolve0.2225gofpotassiumiodate(KIO3)in900mlofwateranddiluteto1L.
X2.1.5.7PotassiumIodate,StandardSolutionB(1mL=0.02mgS)—Transfer200mLofpotassiumiodateSolutionA(1mL=0.1mgS)toa1-Lvolumetricflask,dilutetovolume,andmix.
NOTEX2.2—Thesulfurequivalentisbasedonthecompleteconversionofsulfurtosulfurdioxide.Therecoveryofsulfurasthedioxidemaybelessthan100%,butitisconsistentwhenthetemperatureandtherateofoxygenflowaremaintainedconstant.Anempiricalfactormustbedeterminedbyananalysisofastandardsample.
X2.1.5.8Starch-IodideSolution—Transfer1gofsolubleorarrowrootstarchtoasmallbeaker,add2mLofwater,andstiruntilasmoothpasteisobtained.Pourthemixtureinto50mLofboilingwater.Cool,add1.5gofpotassiumiodide(KI),stiruntildissolved,anddiluteto100mL.
X2.1.5.9Tin(Low-Sulfur)Accelerator—Granular.
X2.1.6Standards—StandardsforcalibrationareNationalInstituteofStandardsandTechnology(formerlyNationalBureauofStandards)steelsofthepropersulfurcontent.X2.1.7SamplePreparation:
X2.1.7.1Prepareatestpanelofcold-rolledsteel150mmlongby100mmwideby1mmthickoranyotherconvenientsize.Clean,aciddip,andelectroplatewithapproximately7.5µmofanadherentnickeldepositandthoroughlyrinse.Buffednickelorbuffedstainlesssteelmayalsobeusedasalternativestosteelelectroplatedwithnickel.
X2.1.7.2Passivatethetestpanelanodicallyat3Vfor5to10sinahotalkalinecleaner(temperature70to80°C)containing30g/Lofsodiumhydroxide(NaOH)and30g/Loftrisodiumphosphate(Na3PO4)or60g/Lofanyothersuitableanodicalkalinecleaner.
X2.1.7.3Coatthepassivatedtestpanelwith25to37µmofnickeldepositedfromthesamesolutionusingthesameparametersasforthecoatedarticlesrepresentedbythetestspecimen.
X2.1.7.4Removetheedgesoftheelectroplatedpanelwithahandorpowershearoranyotherconvenientmethodthatpermitsreadyseparationofthetestfoil.
X2.1.7.5Separatefromthepanel,washthenickelfoilelectroplatewithwatertoremovesalts,andblotdry.Cutintopieces2to3mmpersidewithascissors.Transfertoa100-mLbeaker,coverwithwater,andheattoboiling.Pouroffthewaterandwashwithmethanol.Airdrythenickelonfilterpaper.X2.1.8WeightforStandardsandSamples—Selectandweightothenearest0.1mganamountofsampleasfollows:
ExpectedSulfurContent,mass%
0.005to0.100.10to0.50
WeightofSample,g1.060.020.260.02
meanstandardmaybesimulated,ifnecessary,bytakingonehalfthesampleweightofeachoftheothertwo.Followthestepsoftheprocedure.X2.1.10Procedure:
X2.1.10.1Tothecrucibleadd1gofironchips,0.8gofironpowder,and0.9goftin.Transfertheproperweightofsampleandcover.
X2.1.10.2Turnonthepoweroftheinductionfurnaceandallowtheunittoheattooperatingtemperature.Withoxygenflowingthroughtheabsorptionvessel,fillittoapredeterminedpointwithHCl(3+97)(X2.1.5.3)(NoteX2.3).Add2mLofstarchsolutiontothevessel.Withtheoxygenflowadjustedto1.0to1.5L/min(NoteX2.4),addKIO3solutionspecifieduntiltheintensityofthebluecoloristhatwhichisconsideredastheendpoint.Refilltheburet.
NOTEX2.3—Alwaysfillthetitrationvesseltothesamepoint.
NOTEX2.4—Theoxygenflowratemaybeadjustedtomeettherequirementsofindividualoperatorsorequipment;however,theflowratemustbethesameforthetestsamplesandthestandardsamples.
X2.1.10.3Aftertheunithasbeenatoperatingtemperatureforatleast45s,placethecoveredcruciblecontainingthesampleandacceleratorsonthepedestal.Withtheoxygenflowadjusted,raisethecrucible,closethefurnace,andturnonthepower.Burnthesamplefor8to10min.TitratecontinuouslywiththeKIO3solutionatsucharateastomaintainasnearlyaspossibletheoriginalintensityofthebluecolor.Theendpointisreachedwhentheoriginalbluecolorisstablefor1min.Recordthefinalburetreadinganddrainthetitrationvesselthroughtheexhauststopcock.
X2.1.10.4Blank—Determinetheblankbyplacingthesameamountofacceleratorsusedinthetestsampleinapreignitedcrucible.CoverandproceedasinX2.1.10.3.
X2.1.11Calculation—Calculatethesulfurfactorofthepotassiumiodateasfollows:
Sulfurfactor,g/unitvolume5
A3B~C2D!3100(X2.1)
where:
A=standardsampleused,g,
B=sulfurinthestandardsample,%,
C=KIO3solutionrequiredfortitrationofthestandard
sample(NoteX2.5),mL,and
D=KIO3solutionrequiredfortitrationoftheblank,mL
(NoteX2.5).
NOTEX2.5—Useapparentpercentageofsulfurfor“direct-reading”burets.
X2.1.9Calibration—Selectaminimumoftwostandardswithsulfurcontentsnearthehigh-andlow-limitsoftherangeforagivensampleweightandalsoonenearthemean.The
X2.1.11.1Calculatethepercentageofsulfurinthetestsampleasfollows:
Sulfur,mass%5
~E2D!F
3100G(X2.2)
--`,,```,,,,````-`-`,,`,,`,`,,`---
Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
7
Not for Resale
B604–91(2008)
theCommitteeonAnalyticalReagentsoftheAmericanChemi-calSociety,wheresuchspecificationsareavailable.4Othergradesmaybeused,provideditisfirstascertainedthatthereagentisofsufficientlyhighpuritytopermititsusewithoutlesseningtheaccuracyofthedetermination.
X2.2.4.2PurityofWater—Unlessotherwiseindicated,ref-erencetowatershallbeunderstoodtomeanreagentwaterconformingtoSpecificationD1193.
X2.2.4.3AmmoniacalZincSulfateSolution—Dissolve50gofzincsulfate(ZnSO2·7H2O)in250mLofwater,add250mLofammoniumhydroxide(NH4OHspgr0.90)andmix.Transfertoaflaskandallowtostandabout24handfilterintoapolyethylenebottle.
X2.2.4.4HexachloroplatinicAcidSolution(10g/L)—Dissolve0.5gofhexachloroplatinicacid(H2PtCl6·6H20)inabout40mLofwater,add5mLofhydrochloricacid(HClspgr1.19),anddiluteto50mL.
X2.2.4.5HydrochloricAcid-PlatinumChlorideSolution—Prepare500mLofdilutedhydrochloricacid(HClspgr1.19,1partacidin1partwater).Add2.5mLofthehexachloropla-tinicacidsolutionandmix.
X2.2.4.6PotassiumIodate,StandardSolution(0.1N)—Drythecrystalsofpotassiumiodate(KIO3)at180°Cfor1h.Dissolve3.570goftheKIO3inabout200mLofwater,transfertoa1-Lvolumetricflask,dilutetovolume,andmix.X2.2.4.7PotassiumIodate,StandardSolution(0.005N)—Transfer25mLof0.1NKIO3solutiontoa500-mLvolumetricflaskwithapipet,dilutetovolume,andmix.
X2.2.4.8StarchSolution(10g/L)-PotassiumIodide(50g/L)Solution—Addabout5mLofwaterto1gofsolublestarchwithstirringuntilapasteisformedandaddto100mLofboilingwater.Cool,add5gofpotassiumiodide(KI),andstiruntiltheKIisdissolved.
X2.2.5SamplePreparation—PreparesampleasoutlinedinX2.1.7.
X2.2.6WeightofSample—Selectandweightothenearest0.1mganamountofsampleasfollows:
--`,,```,,,,````-`-`,,`,,`,`,,`---FIG.X2.1ApparatusfortheDeterminationofSulfurinElectroplatedNickelFoilbytheEvolutionMethodX2.2
where:
E=KIO3solutionrequiredfortitrationofthetestsample,
mL(NoteX2.5),
D=KIO3solutionrequiredfortitrationoftheblank,mL,F=averagesulfurfactoroftheKIO3,g/unitvolume,for
thestandardsused(seeX2.1.11),andG=sampleused,g.
X2.2DeterminationofSulfurinElectroplatedNickelby
theEvolutionMethod
X2.2.1Scope—Thismethodcoversthedeterminationofsulfidesulfurinelectroplatednickelintherangefrom0.005to0.2mass%.
X2.2.2SummaryofMethod5—Sulfidesulfurisevolvedashydrogensulfide(H2S)ondissolvingthesampleofhydrochlo-ricacid(HCl)containingasmallamountofplatinumasanacceleratorfordissolution.Thesulfurisprecipitatedaszincsulfide(ZnS)inthereceivingvesselandthentitratedwithstandardpotassiumiodatesolution.Valuesarebasedonpotas-siumiodide(KIO3)astheprimarystandard.X2.2.3Apparatus:
X2.2.3.1TheapparatusisshowninFig.X2.1.Itmaybeassembledusinga50-mLErlenmeyerflaskwithaNo.19/38outerjoint.AwashbottlefittedwithaNo.19/38innerjointcanbecuttofitthe50-mLflask.Theexittubecanbebentandconnectedtothe6-mmgastubewithtubing.
X2.2.3.2Anitrogencylinderwithvalvesandpressureregulator.
X2.2.3.3Buret,10-mL.X2.2.4Reagents:
X2.2.4.1PurityofReagents—Reagentgradechemicalsshallbeusedinalltests.Unlessotherwiseindicated,itisintendedthatallreagentsshallconformtothespecificationsof
5ExpectedSulfurContent,mass%
0.005to0.070.05to2WeightofSample,g60.02
1.00.4
X2.2.7Procedure:
X2.2.7.1Weighthespecifiedamountofsampletothenearest0.1mgandtransfertothe50-mLevolutionflask.X2.2.7.2Add20mLofwaterand3mLofammoniacalzincsulfatesolutiontothereceivingflask.
X2.2.7.3Adjustthehotplatetomaintainthetemperatureof25mLofwaterina50-mLErlenmeyerflaskat80°C.
X2.2.7.4Add15mLofthehydrochloricacid-hexachloroplatinicacidsolutiontothesample.AssembletheapparatusasshowninFig.X2.1andstartaverygentlestreamofnitrogenthroughthesystem.
NOTEX2.6—Aflowofabout30cm3/minissatisfactory.Ifthesampledissolvesrapidly,theflowshouldbedecreasedduringthetimehydrogenisfreelyliberated.
Luke,C.L.,AnalyticalChemistry,Vol29,1957,p.1227.
X2.2.7.5Continuetheheatingandflowofnitrogenuntilthesampleiscompletelydissolved,thencontinuefor5min(NoteX2.6).Separatethegasdeliverytubefromtheevolutionheadandremovethereceivingflaskwiththedeliverytube.
8
Not for Resale
Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
B604–91(2008)
NOTEX2.7—Thesolutioninthereceivingflaskwillremainalkalinethroughoutthedissolutionperiodifthehotplatetemperatureandthenitrogenflowareproperlyadjusted.Additionalammoniacalzincsulfatesolutionmaybeadded,ifnecessary,butthesampleshouldbediscardedifthereceivingsolutionbecomesacidic(lessthanpH7bytestpaper).
X2.2.7.6Add1mLofthestarch-iodidesolutionand5mLofdilutedHCl(1+1)andmix.Titrateimmediatelywithstandardpotassiumiodatefroma10-mLburettothefirstbluecolor.Drawsomeofthesolutionintothedeliverytubewitharubberbulbandreleasealongtheneckoftheflasktowashdownanyadheringzincsulfide.Swirlthesolutiontowashtheoutsideofthetube.Continuethetitrationtoapermanentbluecolor.
X2.2.7.7Runablanktitrationtothesamestarch-iodidecoloronamixtureof20mLofwater,3mLofammoniacalzinc
sulfide,1mLofstarch-iodidesolution,and5mLofdilutedhydrochloricacid(1partHClspgr1.19and1partwater)ina50-mLErlenmeyerflask.
X2.2.8Calculation—Calculatethemasspercentofsulfidesulfurasfollows:
Sulfidesulfur,mass%5
~A2B!30.00530.016
3100W(X2.3)
where:
A=0.005NKIO3solutionusedforthesampletitration,
mL,
B=0.005NKIO3solutionusedintheblank,mL,andW=sampleused,g.
X3.DUCTILITYTEST
NOTEX3.1—Thistestisusedtotestensurecomplianceofthetypeofcopperandnickeldepositwiththeappropriatedefinitiongivenin6.4.RefertoPracticeB489fordetailsoncalculationofpercentductility.
--`,,```,,,,````-`-`,,`,,`,`,,`---X3.1.1.2Cuttheteststripfromtheelectroplatedsheetwithaflatshear.Roundorchamferthelongeredgesoftheteststrip,atleastontheelectroplatedside,bycarefulfilingorgrinding.X3.2Procedure—Bendtheteststripwiththeelectroplatedsideintension(ontheoutside),bysteadilyapplyingpressure,through180°overamandrelof11.5-mmdiameteruntilthetwoendsoftheteststripareparallel.Ensurethatcontactbetweentheteststripandthemandrelismaintainedduringbending.X3.3Assessment—Theelectroplatingisdeemedtocomplywiththeminimumrequirementofanelongationof8%ifaftertestingtherearenocrackspassingcompletelyacrosstheconvexsurface.Smallcracksattheedgesdonotsignifyfailure.
X3.1PreparationofTestPiece:
X3.1.1Prepareaplatedteststrip150mmlong,10mmwide,and1mmthickbythefollowingmethod:
X3.1.1.1Polishasheetoftheappropriatebasismetal,similartothatofthearticlesbeingelectroplated,exceptthatifthebasismetaliszincalloythesheetmaybeofsoftbrass.(Useasheetsufficientlylargetoallowtheteststriptobecutfromitscenteraftertrimmingoffaborder25mmwideallaround.)Electroplatethepolishedsideofthesheetwithcopperornickeltoathicknessof25µmunderthesameconditionsandinthesamebathasthecorrespondingarticles.
X4.DETERMININGTHENUMBEROFDISCONTINUITIESINCHROMIUMELECTROPLATING(DUBPERNELLTEST)
X4.1PrincipleoftheMethod8—Copperwillbedepositedonnickelexposedthroughdiscontinuitiesinchromiumbutnotonthechromium,providedthatpotentialisproperlycontrolled(keptlowenoughtoavoidactivationofpassivechromium).X4.2PreparationofTestPiece:
X4.2.1Maskalledgesnotcoveredbythechromiumwithanonconductivepaintorpressuresensitivetape,includingthewireusedtomakecontacttothecathodebar.Aftermasking,cleanthespecimenbysoakinginahotalkalinecleaneruntilthesurfaceisfreeofwaterbreaks.Amildscrubbingwithasoftbrushishelpful.Followthecleaningbyathoroughrinseincolddeionizedwater,thenadipina5%bymasssolutionofH2SO2.
X4.2.2Makefreshlycleanedsampleanodicat0.8Vfor30sinthecopperplatingbath,thenswitchtocathodic(seeFig.X4.1)atapproximately0.2to0.4V,for2min(seeNoteX4.1andNoteX4.2).(Warning—Donotgobeyondthespecifiedanodicvoltageortimebecausenickelwillslowlydissolveorbecomepassivated.)
Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
Bathformulation—(non-critical)CuSO4·5H2O1M(250g/L)
H2SO4(spgr1.95)0.5M(20–25°C)Temperature(room)Anode(copper)Liveentry
X4.2.3Followingcopperelectroplating,carefullyremovethespecimen,rinseincoldthenhotdeionizedwater,andairdry.Thespecimenshouldnotbewipedwhereporesorcracksaretobecounted,norshouldthepartbeforceairdried.Dryingcanbeacceleratedbyfollowingthelastwaterrinsebyarinsewithalcohol(ethanol)orothervolatilewatermisciblesolvent.X4.2.4Thecopperdepositsonlyontheunderlyingnickelthatisexposedthroughdiscontinuities(poresandcracks)inthechromium.
X4.3Assessment:
X4.3.1Thenumberofdiscontinuitiesinthechromiumcanbeestimatedbycountingthecoppernodulesdepositedwithinaknownareaofthespecimenorthenumberofcracksinaknownlength.Thesedeterminationsarefacilitatedwithametallurgicalmicroscopefittedwithacalibratedreticleinthe
9
Not for Resale
B604–91(2008)
FIG.X4.1SchematicDiagramofaSwitchingApparatustoConvenientlyControlPolarityandVoltageDuringPorosityTestingvia
CopperDeposition
eyepiece,orfromthephotomicrographstakenofarepresen-tativefieldofthespecimen.(SeeX4.4foraguidetothedeterminationofactivecorrosionsitesinthechromiumlayer.)X4.3.2Currentmeasuredorrecordedduringthecathodiccycle,orboth,servesasareliableindicatorofporosity.Ifcurrentremainslow(<1mA/cm2)duringthecathodiccycle,porosityislow.Rapidlyrisingcurrent(DI/Dt'1to2mA/minandhigh(2to4mA/cm2)finalcurrentisindicativeofhighporosity.Useofastripchartrecorderprovidesapermanentrecordofthetestcurrent.Withexperience,directcountsofnodulesofCudepositedcanbereducedtoperiodicverifica-tionsastheI·tsignature.Aqualitativevisualcheck(micro-scopically)willthensufficeforregularroutineuse.
NOTEX4.1—Exactpotentialusedisdependentonanode-cathodespacing.Atadistanceof8to10cm,0.2Vusuallyproducesthedesireddeposit.Asspacingincreases,thepotentialcanbeincreasedto0.4V.NOTEX4.2—Aftercleaning,anodictreatmenttorepassivatechromiumisessential.Platingtimecanbevariedfrom1to5min.Twominuteshasbeenfoundtobenearoptimum.Withhighlyporouschromium,longertimesincurriskofmergingthedepositnodules,givingrisetoambiguitiesincountingpores(nodules).
--`,,```,,,,````-`-`,,`,,`,`,,`---X4.3.3Warning—Donotexceed0.6Vcathodic.Highcathodicpotentialscanactivatechromiumlocally,givingrisetospuriouslyhighnodulecounts.Ifthisconditionissuspected,itcanbetestedbygentlywipingthecopperoffwithatissue.Ifcopperadherestospecimen,itisprobablethecathodicpotentialwastoohigh,thusdepositingcopperonthechro-miuminsteadofjustinthepores.
X4.4DeterminationofActiveCorrosionSitesByCorrosionTesting:
X4.4.1Beforetesting,thepartshouldbecleanedtoelimi-natewaterbreaks.Magnesiumoxide,warmwaterandsoap,orsolvents,oracombinationthereof,mightbenecessaryforthoroughcleaning.Aftercleaning,examinethepartundermagnificationtodetermineporecountandsize.Amagnifica-Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
tionbetween100and200Xisconvenientforthesizeofporestypicallyfoundinmicrodiscontinuouschromiumlayers.Ifpossible,photographthepartundermagnificationasarefer-ence.Differentphotographsshouldbetakenundermagnifica-tionofallthesignificantsurfacesandcurrentdensitiestorecordthedifferenceinporecountandsizeaftercorrosion.X4.4.2Todeveloptheactivecorrosionsites,subjecttheparttobetween16and24hofCASStesting.Forconvenience,subjecttheparttoonecycleofCASSasdeterminedbythecorrosionspecificationforthepart.AfterCASStesting,rinsethepartinwarmwatertoremovethesaltlayer.Ifthepartcontainscorrosiveproductstaining,itcanbewashedwithaverymildspongeinwarmwaterbutthepartshouldnotbesubjectedtoanyabrasivecleaning.Afterdryingeitherbyhotairorsolventsuchasmethanol,thepartshouldbeviewedagainunderthesamemagnificationaspreviouslyusedandinthesameareasinwhichthepicturesweretaken.Bycomparingthepicturesoftheseareasbeforeandaftercorrosion,itistypicallyeasytodistinguishbetweentheporesitesthathavestartedtocorrodeandthosethathavenot.Thecorrodingporesitesaretypicallydistinctlylargerthantheuncorrodedsitesandhaveadarkerandroughertexture.Bymeansofthephotographataknownmagnification,theactiveporesitescanbecountedandtheactivesitesperareacanbecalculated.X4.4.3EventhoughthenecessaryworkhasnotbeenconductedtoestablishacorrelationbetweenactivecorrosionsitesandstartingsitesasmeasuredbyDubpernell,itappearsthatforagivencurrentdensityanddepositsystemthereisacorrelationbetweenthenumberofporesbeforecorrosionandthenumberofactivecorrosionsitesafteronecycleofCASStesting.Oncethiscorrelationhasbeenestablishedatagiveninstallation,asimple100to200Xviewingofapartmightnondestructivelyindicatetheserviceperformanceofthepartaftercorrosion.Thedesirednumberofactivecorrosionsiteshasnotbeendefinitelyestablished.Thisnumberdepends
10
Not for Resale
B604–91(2008)
somewhatonthesizeoftheporesbeforeandaftercorrosion,thethicknessandpotentialsofthedepositsystem,andthe
desiredtrade-offbetweenbasismetalcorrosionandstaininginCASS.
ASTMInternationaltakesnopositionrespectingthevalidityofanypatentrightsassertedinconnectionwithanyitemmentionedinthisstandard.Usersofthisstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtheriskofinfringementofsuchrights,areentirelytheirownresponsibility.
Thisstandardissubjecttorevisionatanytimebytheresponsibletechnicalcommitteeandmustbereviewedeveryfiveyearsandifnotrevised,eitherreapprovedorwithdrawn.YourcommentsareinvitedeitherforrevisionofthisstandardorforadditionalstandardsandshouldbeaddressedtoASTMInternationalHeadquarters.Yourcommentswillreceivecarefulconsiderationatameetingoftheresponsibletechnicalcommittee,whichyoumayattend.IfyoufeelthatyourcommentshavenotreceivedafairhearingyoushouldmakeyourviewsknowntotheASTMCommitteeonStandards,attheaddressshownbelow.
ThisstandardiscopyrightedbyASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.Individualreprints(singleormultiplecopies)ofthisstandardmaybeobtainedbycontactingASTMattheaboveaddressorat610-832-9585(phone),610-832-9555(fax),orservice@astm.org(e-mail);orthroughtheASTMwebsite(www.astm.org).
Copyright ASTM International
Provided by IHS under license with ASTM
No reproduction or networking permitted without license from IHS
--`,,```,,,,````-`-`,,`,,`,`,,`---11
Not for Resale
因篇幅问题不能全部显示,请点此查看更多更全内容