资料翻译
题 目: Fundamentals of Single-chip Microcomputer
单片机基础知识 院系名称: 信息学院 专业班级: 学生姓名: 学 号: 20 指导教师: 教师职称:
附 件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 签名: 年 月 日
附件1:外文资料翻译译文
单片机基础
单片机是电脑和集成电路发展的巅峰,有据可查的是它们也是20世纪最有意义的两大发明。
这两种特性在单片机中得到了充分的体现。一些厂家用这两种特性区分程序存储器和数据存储器在硬件中的特性,如图3-5A-1,依据同样的原理广泛的适用于一般目的的电脑和微电脑,一些厂家在程序内存和数据内存之间不区分,像普林斯顿特性,展示如图3-5A-2。
程序存储器
Fig.3-5A-1 微机系统 输入输出单元 数据存储器 CPU 输入输出单元 内存
CPU Fig.3-5A-2. 传统的普林斯顿计算机
外部定时组 件 重启 中断 电源 时钟系统 定时器/计时器 串行输入输出 程序存储器 并行输入输出 数据存储 CPU Fig3-5A-3. 微型计算机的主要特点
只读存贮器(ROM)
ROM是永久的、非应用程序的易失性存储器。不少微机和单片机用于大批量应用。因此,经济的设备制造要求程序存储器的内容是在制造期间永久性的刻录在芯片中,这意味着必须采用严谨的方法,因为ROM代码不能在制造之后修改。这一发展过程可能涉及仿真、使用硬件仿真功能以及强大的软件工具等先进的开发系统。
一些制造商在其提供的设备包括了用户可编程内存。其中最简单的是设备能够运行于微处理器模式,通过使用一些输入/输出作为地址线额外的ROM选项和访问外部内存的数据总线。这种类型的设备可以表现为单芯片微型计算机,尽管有限制的I / O和外部修改这些设备的电路,但小内存装置在永久性内存制造中的应用是非常普遍的。和其它芯片相比,单芯片微型计算机可以节省大量成本,可以有更方便的ROM设备更换,可在与EPROM(可擦除可编程只读存储器)插座或存储器共同使用。
随机存取存储器(RAM)
RAM用于变量和工作在存储器的程序。由于数据存储设备的大小不同,RAM类型也有所不同,但具有相同的特征宽度(4,8,16 比特等)。特殊功能寄存器,如栈指
针或定时器寄存器,往往在逻辑上被纳入内存区域。它也在微型电脑的硬件中做集中内存,在非物理特性的微机中,它是没必要区分内存和处理器之间的区别。 中央处理单元(CPU)
CPU是象微型电子计算机和微控制器的微型电脑。许多微型电脑和微控制器涉及到二进制编码,因而,常常可以发现该CPU是很适合处理这种类型的数据。对设施进行良好与否的测试,设置和重置单个位的内存或I / O控制器的应用程序,以及常见的许多涉及打开和关闭的单输出线,这些都很容易使用到二进制设备,如开关,恒温器,固态继电器,阀门,电机等。 并行输入/ 输出
并行输入和输出有所不同,在不同的微机中,大多数设立一个机制,至少选择让其中一些引脚输出和一些引脚输入,这可能适用于所有的端口和有些I / O线直接连接的设备,例如荧光显示器。也可以提供足够的电流,使接口和其他设备直接相连,比如一些设备只允许一个I / O端口,其他组件将作为系统总线配置的片外存储器和I / O扩展。这个设施是一个产品系列的潜在发展,因为连续增强不是建立在现有的软件基础上的,因此这是不可取的。 串行输入/输出
串行通信是指与终端设备的链接使用少量的通讯线,这种通讯也可以利用特殊的接口连接功能芯片把几个微型机连在一起。双方按照异步同步通信方案要求的规则提供成帧的信息,这可以作为一个硬件设施必须的条件。它需要选择一个波特率和负载号码、有串行发送器的缓冲器,进行适当的数据串行处理,然后由硬件电路完成。
定时/计数器设施
许多应用的单片机需要对过去真实时间进行准确的评价,这可以由每个程序中的执行时间分支进行认真评估,经常用于简单的程序,因为它的工作效率不高。评估的首选方法是使用计时器电路,能独立地计算精确的时间增量,并生成一个预设的中断时间,这种类型的定时器通常可重载应用。当计时器产生中断或设置标记时,计数器到达零(更好一点的计时器有自动加载初始值的功能),这将在计时器重新启动之前减少重新加载计数器和评估的时间。有时候与定时器相关的是一个事件计数器,这个设备通常有一个特殊的输入引脚,可直接驱动计数器。
定时元件
大多数微型计算机时钟电路只需要简单的计时元件,如果要求比较高的性能,必须使用晶体以确保最大接近时钟频率。许多时钟电路还具有计算电阻和低电容工作成本的定时元件,这必须从外部驱动,这种安排在微机外部同步时是非常有用的。
今天的PLC(可编程逻辑控制器)将面对日益复杂的挑战。一旦他们取代继电器,将赋予新的工作和新的语言,将被迫和大量的控制产品竞争。对于今年的年度PLC技术的更新,我们将在PLC制造商会就这些主题提出更多问题. 编程语言
更高水平的PLC编程语言已经推行有一段时间了,但最近才如雨后春笋般的流行起来。正如西门子能源和自动化公司副总裁兼总经理雷蒙德莱韦耶所说,可编程控制更适合于复杂的操作,因为梯形逻辑使编程语言变得更加实际,更加有效和更加强大的。 PLC的过程控制
到目前为止,PLC并没有大量用于连续过程控制,这种状况会继续下去吗?“我感觉到了,PLC将用于过程工业,但不一定是过程控制。” Jannotta说。几个供应商,显然是把赌注押在已经实行了PLC的应用优化的过程,富瑞安的经理Ryan认为PLC将越来越多地使用食品、化工、石化等行业,在PLC的两种类型应用程序中,第一种是过程控制系统,它目前已经随着价格标签开始发展。第二种是融入顺序逻辑,在这方面批次控制循环的密切合作是最好的例子,在那里顺序和维持过程变量是密切合作地交织在一起,使拥有一个可编程控制器的逻辑顺序的好处远远超过了不具有分布式控制的系统。
Bill Barkovitz, Triconex的总统,预言:“今后所有的控制器在过程控制系统的业务将引用更多的PLC技术, PLC功能比以往任何时候都要多。” 通信和规范
对自动化工厂来说,在整体上通信是至关重要的个人自动化单元。在过去数年我们听说了许多公司都纷纷跟进的很多规范,但是,不少人失望的发现地图规范并没有立即出现。拉里科马雷克说:“现在,规范仍然是一个不确定的目标,对于制造商规范没有最终决定。目前,正在推出的产品样本满足MAP2.1标准,但是当新标准MAP3.0被引进后,以MAP2.1为基础的产品将被淘汰”。
正因为如此,许多PLC厂商正在制定完整的规范。 例如Omron,拥有一个完整
的兼容程序,但欧姆龙工业部副总裁弗兰克纽伯恩在报告中说,欧姆龙公司的PLC定义还谈不上规范。
由于不太可能将个人的PLC进行广泛的交流,制造商更专注于专有的网络。按照萨尔的说法,用户担心,如果他们不从规则上和供应商妥协,他们将要增加对通信结构的不支持程度。 通用的I / O
由于大多数PLC厂商在兼容问题上沟通不够,在另一端连接的I / O问题,更是支离破碎。除了少数例外,I / O是仍然专有技术,然而,谁都感觉到了I / O最终将成为普遍的。GE Fanuc的希望是做智能I / O线,I / O制造商都向同一方向进发。
许多人说,I / O是一个高价值项目, PLC制造商将永远希望保持它的专有性。Jannotta说:“ I / O将在硬件销售中不成比例,而每个PLC供应商都在试图保护这一点,出于这个原因,PLC的制造商将不会开始销售通用I / O和其他厂商的系统,如果我们开始销售该产品的实物,那我们还有什么可生产的?”
随着更多智能I / O出现,Provanzano认为在不同的制造商中间这将导致更多的分化。“哪里的I / O成为系统的一部分真的很难定义,哪些是I / O?哪些是CPU?随着分布式的发展,如果你愿意,CPU也同样可以纳入作为I / O的系统” PLC的 I / O和个人电脑的连接
虽然不同的PLC厂商可能会继续用专有的I / O,但一些厂商使I / O连接到IBM PC这样的兼容设备成为可能.Alle - bradeley和辛辛那提米拉克龙公司已经拥有这项技术,并有传言说,通用的电气计划也将沿着同样的思路。GE Fanuc北美的产品规划经理克特尔胡特认为“我想主机多个接口将有代替I/O的趋势。” PLC VS电脑
如果IBM 7552,行动仪器BC22,和其他计算机出现在工厂,这是否就意味着不会对PLC产生新的竞争?富瑞恩说:“有一些控制功能可用于电脑,可编程程序控制器为了更好的工作已被迫适应这些应用。”然而,在我们调查的厂商多数不认为“个人电脑入侵”将对他们产生问题。大多表示PLC和PC结构上的差别决定他们有不同的作用,PC将主管通讯和管理,PLC则进行控制,他们相信这只是意味着,PLC和个人电脑将能够共享相同的数据。
富瑞恩说:“通用的计算机内在结构不同,可编程控制器硬件结构也已经由单
一制造商内置到几乎每一个制造商都可以生产的状况。今天定制的硬件主要来运行梯形逻辑,解决机器代码。”在根本的区别上,他引用了一个称呼“机器状态。富瑞安说:“当你关闭机器,或中断周期,或跳转到另一个周期,现场可编程控制器可以记得机器的状态:定时器状态是什么?计数器状态是什么?锁存的状态是什么?但计算机本身不这样做,这就是计算机和可编程控制器的区别。”
附件2:外文原文(复印件) 外文出处
Automation Professional English Course
Fundamentals of Single-chip Microcomputer
The single-chip microcomputer is the culmination of both the development of the digital computer and the integrated circuit arguably the tow most significant inventions of the 20th century . These tow types of architecture are found in single-chip microcomputer. Some employ the split program/data memory of the Harvard architecture, shown in Fig.3-5A-1, others follow the philosophy, widely adapted for general-purpose computers and microprocessors, of making no logical distinction between program and data memory as in the Princeton architecture, shown in Fig.3-5A-2.
In general terms a single-chip microcomputer is characterized by the incorporation of all the units of a computer into a single device, as shown in Fig3-5A-3.
Program memory Input& Output CPU unit Data memory
Fig.3-5A-1 A Harvard type memory CPU Input& Output unit Fig.3-5A-2. A conventional Princeton computer
External Timer/ System Timing Counter clock components Serial I/O Reset ROM Prarallel I/O Interrupts RAM CPU Power Fig3-5A-3. Principal features of a microcomputer
Read only memory (ROM).
ROM is usually for the permanent, non-volatile storage of an applications program .Many microcomputers and microcontrollers are intended for high-volume applications and hence the economical manufacture of the devices requires that the contents of the program memory be committed permanently during the manufacture of chips . Clearly, this implies a rigorous approach to ROM code development since changes cannot be made after manufacture .This development process may involve emulation using a sophisticated development system with a hardware emulation capability as well as the use of powerful software tools.
Some manufacturers provide additional ROM options by including in their range devices with (or intended for use with) user programmable memory. The simplest of these is usually device which can operate in a microprocessor mode by using some of the input/output lines as an address and data bus for accessing external memory. This type of device can behave functionally as the single chip microcomputer from which it is derived albeit with restricted
I/O and a modified external circuit. The use of these ROMless devices is common even in production circuits where the volume does not justify the development costs of custom on-chip ROM;there can still be a significant saving in I/O and other chips compared to a conventional microprocessor based circuit. More exact replacement for ROM devices can be obtained in the form of variants with 'piggy-back' EPROM(Erasable programmable ROM )sockets or devices with EPROM instead of ROM 。These devices are naturally more expensive than equivalent ROM device, but do provide complete circuit equivalents. EPROM based devices are also extremely attractive for low-volume applications where they provide the advantages of a single-chip device, in terms of on-chip I/O, etc. ,with the convenience of flexible user programmability. Random access memory (RAM).
RAM is for the storage of working variables and data used during program execution. The size of this memory varies with device type but it has the same characteristic width (4,8,16 bits etc.) as the processor ,Special function registers, such as stack pointer or timer register are often logically incorporated into the RAM area. It is also common in Harard type microcomputers to treat the RAM area as a collection of register; it is unnecessary to make distinction between RAM and processor register as is done in the case of a microprocessor system since RAM and registers are not usually physically separated in a microcomputer . Central processing unit (CPU).
The CPU is much like that of any microprocessor. Many applications of microcomputers and microcontrollers involve the handling of binary-coded decimal (BCD) data (for numerical displays, for example) ,hence it is common to find that the CPU is well adapted to handling this type of data .It is also common to find good facilities for testing, setting and resetting individual bits of memory or I/O since many controller applications involve the turning on and off of single output lines or the reading the single line. These lines are readily interfaced to two-state devices such as switches, thermostats,
solid-state relays, valves, motor, etc. Parallel input/output.
Parallel input and output schemes vary somewhat in different microcomputer; in most a mechanism is provided to at least allow some flexibility of choosing which pins are outputs and which are inputs. This may apply to all or some of the ports. Some I/O lines are suitable for direct interfacing to, for example, fluorescent displays, or can provide sufficient current to make interfacing other components straightforward. Some devices allow an I/O port to be configured as a system bus to allow off-chip memory and I/O expansion. This facility is potentially useful as a product range develops, since successive enhancements may become too big for on-chip memory and it is undesirable not to build on the existing software base. Serial input/output .
Serial communication with terminal devices is common means of providing a link using a small number of lines. This sort of communication can also be exploited for interfacing special function chips or linking several microcomputers together .Both the common asynchronous synchronous communication schemes require protocols that provide framing (start and stop) information .This can be implemented
as
a
hardware
facility
or
US
asynchronous
receiver/transmitter) relieving the processor (and the applications programmer) of this low-level, time-consuming, detail. t is merely necessary to selected a baud-rate and possibly other options (number of stop bits, parity, etc.) and load (or read from) the serial transmitter (or receiver) buffer. Serialization of the data in the appropriate format is then handled by the hardware circuit.
Timing/counter facilities.
Many application of single-chip microcomputers require accurate evaluation of elapsed real time .This can be determined by careful assessment of the execution time of each branch in a program but this rapidly becomes inefficient for all but simplest programs .The
preferred approach is to use timer circuit that can independently count precise time increments and generate an interrupt after a preset time has elapsed .This type of timer is usually arranged to be reloadable with the required count .The timer then decrements this value producing an interrupt or setting a flag when the counter reaches zero. Better timers then have the ability to automatically reload the initial count value. This relieves the programmer of the responsibility of reloading the counter and assessing elapsed time before the timer restarted ,which otherwise wound be necessary if continuous precisely timed interrupts were required (as in a clock ,for example).Sometimes associated with timer is an event counter. With this facility there is usually a special input pin ,that can drive the counter directly. Timing components.
The clock circuitry of most microcomputers requires only simple timing components. If maximum performance is required,a crystal must be used to ensure the maximum clock frequency is approached but not exceeded. Many clock circuits also work with a resistor and capacitor as low-cost timing components or can be driven from an external source. This latter arrangement is useful is external synchronization of the microcomputer is required.
因篇幅问题不能全部显示,请点此查看更多更全内容