论数学史的教育价值
The educational value of Mathematics History
专 业:
数学与应用数学
作 者:
指导老师:
二○一四年五月
湖南理工学院 本科毕业论文
摘 要
数学史是穿越时空的数学智慧,数学的发展史给我们呈现了一幅源远流长、日新月异的画卷。学习数学史能使我们获得思想上的启迪和精神上的陶冶,有利于激发学习数学的兴趣、帮助我们理解数学、加深对数学的认识,有利于学生和老师形成正确的数学观,有利于培养学生的数学思维和方法,有利于从数学发展的本质对数学教育提供理论指导。数学史也是数学课程不可缺少的组成部分,在数学教学中融入数学史教育,不仅能体现数学知识、数学思想方法的价值,也能体现情感、态度、价值观方面的价值。只有把数学史中数学思想方法的发展过程和学生学习数学过程中的认知变化过程相结合,才可以体现数学史的教育价值。著名数学家M.克莱因认为:“每一位中学和大学数学教师都应该知道数学史,有很多理由,但最重要的一条理由或许是,数学史是教学的指南。”
数学史具有多方面的教育价值:它有利于激发学生学习数学的兴趣;有利于对学生进行爱国主义教育;有利于帮助学生理解数学及培养数学思维方法;有利于辩证唯物主义世界观的形成;有利于提高学生的美学修养。
关键词: 数学史 数学教育 数学史教育 价值
I
湖南理工学院 本科毕业论文
[空一行黑体小三号]
Abstract
[空一行黑体小四号]
Based on adding Lipchitz condition, we prove the high dimensional implicit function theorem using Picard iterative, which provides another proof of it. Furthermore, we obtain a method for the approximate explicit expression of implicit function.
Keywords: Picard iterative method; implicit function theorem; Lipchitz condition [注: 以上英文摘要部分的字体都是Times New Roman, 且每一段开始都需空四个英文字符, Abstract为加粗小三, Keywords为加粗小四, 其余小四, 关键词之间用分号隔开, 关键词首写字母不大写(专有名词除外)]
II
湖南理工学院 本科毕业论文
目 录
摘 要 .................................................................... I ABSTRACT ................................................................. II 0 引言 ................................................................... 1 1 什么是数学史 ........................................................... 1 2 数学史的发展 ........................................................... 2 3 数学史的重要意义 ....................................................... 1 4 为什么数学教育需要数学史 ............................................... 2 5 数学史的教育价值 ....................................................... 1
5.1有利于激发学生学习数学的兴趣 ...................................... 3 5.2有利于帮助学生理解数学 ............................................ 3 5.3有利于培养数学思维和方法 .......................................... 4 5.4从数学发展的本质对数学教育提供理论指导 ............................ 4 5.5有利于辩证唯物主义世界观的形成 .................................... 3 5.6有利于对学生进行爱国主义教育 ...................................... 4 5.7人文教育价值 ...................................................... 3 5.8有利于提高学生的美学修养 .......................................... 4 6 如何将数学史与数学教育结合 ............................................. 2
参考文献 ................................................................ 10
湖南理工学院 本科毕业论文
1什么是数学史
数学史研究的任务在于弄清楚数学发展过程中的基本史实,再现其本来的面貌,同时通过这些历史现象对数学成就、理论体系及发展模式作出科学合理的解释、说明与评价,从而进一步探究数学科学发展的规律与文化本质。作为数学史研究的基本方法与手段,常有历史考证、比较研究、数理分析等方法。
史学家的职责就是根据史料叙述历史,求实是史学的基本准则。从17世纪开始,西方历史学就形成了考据学,在中国出现更早,鼎盛于清代乾嘉时期,时至今日仍为历史研究的主要方法。只不过随着时代的进步,考据方法在不断地改进,应用范围也在不断拓宽而已。当然,应该认识到史料也存在真伪,考证过程中会涉及到考证者的心理状态,这就必然会影响到考证材料的取舍与考证的结果。这也就是说,历史考证结论的真实性是相对的。同时又应该认识到,考据也并非史学研究的最终目的,数学史研究不能为考证而考证。
不会比较就不会思考,所有的科学思考与调查都不能缺少比较,或者说,比较是认识的开始。当今世界的发展是多极的,不同国家、地区、不同民族之间在文化交流中共同发展,因而随着多元化世界文明史研究的展开与西方中心论观念的淡化,异质的区域文明日益受到重视,从而不同地域数学文化的比较以及数学交流史研究也日趋变得活跃。数学史的比较研究往往围绕数学成果、数学科学范式、数学发展的社会背景等三方面展开。
数学史既属于史学领域,又属于数学科学领域。因此,数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究特殊的辅助手段,在缺乏史料或是史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括及提出历史假说的目的。数理分析实际上是“古”与“今”之间的一种联系。
1.1数学史的研究内容
(1)数学史研究方法论问题;
(2)总的学科发展史──数学史通史;
(3)数学各分支的分科史(包括细小分支的历史);
湖南理工学院 本科毕业论文
(4)不同国家、地区、民族的数学史及其比较; (5)不同时期的断代数学史; (6)数学家传记;
(7)数学概念、数学思想、数学方法发展的历史; (8)数学发展与其他科学、社会现象之间的关系; (9)数学教育史;
(10)数学史文献学;等等。
1.2数学史的研究范围
按研究的范围可分为内史与外史。
内史是从数学内在的原因(包括与其他自然科学之间的关系)来研究数学发展的历史;
外史是从外在的社会原因(包括经济、政治、哲学思潮等原因)来研究数学发展和其他社会因素间的关系。
数学史和数学研究的各个分支,和社会史、文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉及综合性强的性质。
从研究材料上来说,考古资料、各种历史文献、历史上的数学原始文献、文化史资料,以及对数学家的访问记录等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。从研究目标来说,可以研究数学概念、理论、思想、方法的演变史;可以研究数学科学和人类社会的互动关系;可以研究数学思想的传播及交流史;可以研究数学家的生平,等等。
1.3一般数学教育工作者对数学史的理解
数学史是研究数学发生发展的历史。具体地说,它研究数学思想与数学理论的演化过程及其发展规律,研究数学家的思维方式、研究方法,研究数学科研中的成败原因,研究数学发展中的不同观点与理论之间的纷争和融合,研究影响数
湖南理工学院 本科毕业论文
学发展的各种历史因素等等。数学史的内容是非常丰富的,岗位不同的数学教育者根据不同的需要对数学史的理解也是不相同的[1]。
1.3.1 数学史就是数学家的故事
在义务教育和高中阶段,很多数学教师认为要激发学生学习数学的兴趣,就必须利用数学家的故事来吸引学生。他们经常结合以数学家名字命名的公理、定理、原理,来介绍这些数学家的生平、数学成就及崇高的品质,以此来提高学生的学习积极性,培养学生热爱数学和追求真理的良好品质。数学家的名言和故事能够使学生看到数学家深奥的思想、高度的智慧以及刻苦钻研的精神,有利于启发学生对数学的热爱。显然,在课堂教学中数学家的故事是很容易活跃课堂气氛、激发学生的求知欲、培养学生的科学精神,但这些仍然不能保证学生的兴趣能够长期维持下去,尤其是当学生在学习过程中遇到了理解性困难的时候。
数学家的高尚情操及追求真理的科学精神,数学家的成长及发展道路给人的教育和启发甚至超过了数学知识本身,但这一切在数学教育中对学生的影响并不具有一般性,而且这些其他的科学家一样可以给学生带来同样的影响。所以如果只是把数学史当作数学家的故事集的话,数学史和数学本身的特性则显示不出来。
1.3.2 数学史就是数学成果史
数学史研究的是数学发展的历史,但是很多教师仍然只是把数学史当作数学发展史。在课堂上强调的是数学如何发展到今天的体系,好像一切的产生是那么地自然,却很少提到在数学发展过程中数学发生的一面,也很少提及到数学发生是数学家思想观念的碰撞、迷惑,很少提到数学家为了解决这些困惑所采取的方法尤其是不成功的方法。教师沉迷于数学成果的伟大之中,希望学生能够对数学产生兴趣,殊不知也就是在这种数学史的灌输下,很多学生都认为数学是天才才能学习的学科,从而对部分学生的数学学习产生了负面的影响。
湖南理工学院 本科毕业论文
2 数学史的发展
2.1 数学史的发展阶段
数学的发展具有阶段性,因此研究者根据一定的原则把数学史分为了若干时期。目前学术界通常将数学的发展划分为以下5个时期: ① 数学萌芽期(公元前600年以前);
② 初等数学时期(公元前600年至17世纪中叶); ③ 变量数学时期(17世纪中叶至19世纪20年代); ④ 近代数学时期(19世纪20年代至第二次世界大战);
⑤ 现代数学时期(20世纪40年代以来)。
2.2 数学的发展史
古代史
① 古希腊曾有人写过《几何学史》 ,但未能流传下来。
② 5世纪普罗克洛斯对欧几里得的《几何原本》第一卷的注文中还保留有一部分资料。
③ 中世纪阿拉伯国家的部分传记作品和数学著作中,讲述到一些数学家的生平和其他有关数学史的材料。
④ 12世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是数学研究,也是对古典数学著作的整理和保存。
⑤ 1556年,英国数学家用英语写成了基础算术和代数教科书《知识宝库》。 近代史
从18世纪,由C.博絮埃、J.蒙蒂克拉、A.C.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经拉朗德增补)为代表。从19世纪末起,研究数学史的人逐渐增多,断代史和分科史的研究也渐渐展开,1945年以后,更是有了新的发展。19世纪末以后的数学史研究可以分为以下几个方
湖南理工学院 本科毕业论文
面。
1.通史研究
代表作可以举出M.B.康托尔的《数学史讲义》 以及C.B.博耶、D.E.史密斯、洛里亚等人的著作。法国的布尔巴基学派写了一部数学史收入《数学原理》,以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所著的《古今数学思想》一书,是70年代以来的一部佳作。
2.古希腊史
许多古希腊数学家的著作被译成了现代文字,在这方面作出成绩的有胡尔奇、J.L.海贝格、T.L.希思等人。洛里亚和希思还写了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出了成绩。60年代以来匈牙利A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。
3.古埃及史
把巴比伦的楔形文字泥板算书和古埃及的纸草算书译成现代文字是很艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》、《楔形文字数学书》都是这方面的权威性著作。他所著《古代精密科学》一书,汇集了半个世纪以来关于古埃及和巴比伦数学史的研究成果。范·德·瓦尔登的《科学的觉醒》一书,则又加进了古希腊数学史,成为古代世界数学史的权威性著作之一。
4.断代史
德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》一书,是断代体近现代数学史研究的开端,它成书于20世纪,但其中所反映出来的对数学的看法却大部分是19世纪的。直到1978年法国数学家让·亚历山大·欧仁·迪厄多内所写的《1700~1900数学史概论》出版前,断代体数学史专著并不多,但却有(C.H.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从概率论、数论,直到流形概念、希尔伯特数学问题的历史等,有多种专著出现,并且不乏名家手笔。许多著名数学家参与了数学史的研究,可能是基于
湖南理工学院 本科毕业论文
(J.-)H.庞加莱的以下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。”
5.数学家传
他们的全集与《选集》的整理和出版,是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》的出现,记录了历代数学家成名之作的珍贵片断。
6.数学杂志
最早出现于19世纪末叶,M.B.康托尔和洛里亚都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。 外国史
在17、18世纪以前,三角学在欧洲已有所发展。就以三角学的名字而言,是德国数学家毕的斯克斯( B. Pitiscus, 1561-1613 )在 1595 年出版的《三角學,或解三角形五卷( Trigonometriae Sive, De dimensione Triangulor Libriquinque)》中,首先提出来的,解释说:“Trigonometriae est doctrina dedimausione triangulaum(三角学就是解三角形的学说)”。其
“Trigonometriae”一词是由拉丁文“trigonon(三角形)”及“metron(测量)”两词所组成,而这两词是由希腊文“Τριγωμον(三角形)”及“Μετρον(测量)”演变来的。如将“trigonometriae”直译为汉语,应是“三角形的测量”。例如《大测》中所说“大测者,测三角形之法也。……,大於他测,故名大测”。若以近代术语来表示,当为“解三角形”。三角学虽然起源很早,但其名称却形成较晚,由其名称的形成来分析,三角形的测量或解三角形也是三角学的起源之一。在中国,“三角学”一名是由“三角算法”﹑“平三角”﹑“弧三角”等名称渐渐演变而来的。
三角学的发展,由起源迄今差不多经过了三﹑四千年之久,在古代,由於古代天文学的需要,为了计算某些天体的运行行程问题,需要解一些球面三角形,在解球面三角形时,往往把解球面三角形的问题归结成解平面三角形,这些问题
湖南理工学院 本科毕业论文
的积累便形成了所谓古代球面三角学﹑古代平面三角学;虽然古代球面三角学的发展早于古代平面三角学,但古代平面三角学却是古代球面三角学的发展基础。在古希腊,为了便于观察天体的运行及解球面三角形,著名天算家托勒密(Ptolemy,約87-165)在前人希巴卡斯(Hipparchus,约公元前180-125)的基础上,也编制了所谓“弦表”,他借助于几何知识,编制了从 0到 90每隔(1/2)弧的弦长表,在编制中,也曾发现一些球面三角学与平面三角学的关系式,并且计算过 (90-) 弧的弦长;可是,希腊人却未引用“α余弧的弦”或“余弦”这类名称。
8-12世纪,希腊文化传入印度以及阿拉伯,在这些国家里,不但提出“正弦”一词,还以几何方式定义了“余弦线”﹑“正切线”﹑“余切线”以及“正矢线”的意义,并编制了各种三角表;其编制方法虽不相同,但编制的数值却相当精密,对三角学提供了不少贡献,阿拉伯天文学家纳速拉丁(Nasir al-Din al-Tusi,1201-1274)在他的著作《论四边形》里,首先把三角学从天文学中分割出來,看作为一门独立的学科。12-15世纪,三角学传入欧洲,德国著名数学家列吉奧蒙坦(Regiomontanus,1436-1476) 兴纳速拉丁一样,也把三角学看作一门独立学科,着有《论各种三角形 (De triangulis omnimodis)》,其中重点讨论了三角形的解法,并编制了十分精密的“正弦表”,还创造了一些三角公式,对三角学理论提高到一定的水平,为三角学发展起到了不可忽视的作用。 中国史
中国以历史传统悠久而著名于世界,在历代正史的《律历志》“备数”条内经常论述到数学的作用和数学的历史。例如较早的 《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记录了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了一些数学家的传记,正史的《经籍志》则记载有数学书目。
在中国古算书的序、跋中,常常会出现数学史的内容。如:刘徽注《九章算术》序中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行了评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展为四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存的数学史资料。程大位《算法统宗》书末
湖南理工学院 本科毕业论文
附有“算经源流”,记载了宋明间的数学书目。
以上所述都属于零散的片断资料,对中国古代数学史进行较为系统的研究和整理,则是在乾嘉学派的影响下,清代中晚期进行的。主要有:对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版;编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,评论允当,资料丰富,完全可以和蒙蒂克拉的数学史相媲美。
利用现代数学概念,对中国的数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后开始,搜集古算书,进行考订、整理,然后开展研究工作的。经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并且主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一样,都是权威性的著作。
从19世纪末,就有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》,以及50年代李约瑟在其巨著《中国科学技术史》中对中国的数学史进行了全面的介绍。有一些中国的古典算书已经有英、法、日、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接用中国古典文献进行中国数学史的研究,以及和其他国家、地区数学史的比较研究。
2.3 数学史上的三次危机
无理数的发现──第一次数学危机
大约在公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然和社会中不变因素的研究,把天文、几何、算术、音乐称为“四艺”,在其中追寻宇宙的和谐规律性。他们认为:宇宙间的一切事物都可
湖南理工学院 本科毕业论文
以归结为整数或者整数之比,毕达哥拉斯学派的一项重大贡献就是证明了勾股定理,但由此也发现有些直角三角形的斜边并不能表示成整数或整数之比(不可通约)的情形,如直角边长都为1的直角三角形就是如此。这一悖论直接触碰了毕氏学派的根本信条,引起了当时认识上的“危机”,从而产生了第一次数学危机。 到了公元前370年,毕氏学派的欧多克斯通过给比例下新定义的方法把这个矛盾解决了。他处理不可通约量的方法,出现在了欧几里得《原本》第5卷中。欧多克斯和狄德金在1872年给出的无理数的解释与现代解释基本保持一致。今天中学几何课本对相似三角形的处理,仍然反映了不可通约量带来的某些困难和微妙之处。第一次的数学危机对古希腊的数学观点有着极大的冲击,这表明几何学的某些真理与算术无关,几何量不能完全由整数或整数比来表示,反之却可以由几何量来表示,整数的权威地位开始动摇,几何学的身份却升高了。危机也表明了直觉和经验不一定靠得住,推理证明才是最可靠的,从此希腊人开始重视演译推理,并因此建立了几何公理体系,这绝对是数学思想上的一次巨大革命! 无穷小是零吗?──第二次数学危机
18世纪,微分法和积分法在生产和实践中都有了广泛且成功的应用,大部分的数学家对这理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表了《分析学家或者向一个不信正教数学家的进言》,他将矛头指向了微积分的基础——无穷小问题,提出了所谓的贝克莱悖论。他指出:“牛顿在求xn的导数时,采用了先给x以增量0,再应用二项式(x+0)n,从中减去xn求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消失,这样得出增量的最终比。在这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,即假设x没有增量。”他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬的,“dx为失去量的灵魂”。无穷小量到底是不是零?无穷小及其分析又是否合理?由此引起了数学界甚至哲学界长达一个半世纪的争论,引发了数学史上的第二次数学危机。 18世纪的数学思想的确不怎么严谨,直观地强调形式的计算而忽视了基础的可靠。其中特别是:没有清楚无穷小的概念,从而导致微分、导数、积分等概念也不清楚,无穷大的概念不清楚,符号的不严格使用,发散级数求和的任意性,
湖南理工学院 本科毕业论文
不考虑连续就进行微分,不考虑导数和积分的存在性以及函数能否展成幂级数等等。
直到19世纪20年代,有些数学家才开始关注于微积分的严格基础。从阿贝尔、柯西、波尔查诺、狄里赫利等人的工作开始,到戴德金、威尔斯特拉斯和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。
悖论的产生——第三次数学危机
数学史上的第三次危机,是由1897年的突然冲击出现的,从整体来看,到现在还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到了许多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然而然地引起了对数学整个基本结构的有效性的怀疑。
1897年,福尔蒂揭露了集合论中的第一个悖论。两年后,康托发现了与之很相似的悖论。1902年,罗素又发现一个悖论,它除了涉及集合概念本身外没有涉及到别的概念。罗素悖论曾被多种形式通俗化,其中最著名的是罗素在1919年给出的,它牵涉到某村理发师的困境。理发师宣布了一条这样的原则:他给所有不给自己刮脸的人刮脸,并且只给村里这样的人刮脸。当人们尝试回答下列疑问时,就认识到了这类情况的悖论性质:“理发师是否自己给自己刮脸呢?”如果他不给自己刮脸的话,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他也就不符合他的原则。
罗素悖论动摇了整个数学大厦。无怪乎弗雷格收到了罗素的信之后,在他刚要出版的《算术的基本法则》中的第2卷末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信竟把我置于这种境地”。于是就终结了近12年的刻苦钻研,承认无穷集合、无穷基数,仿佛一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在渐渐地丧失。现代公理集合论的大堆公理,真的难说孰真孰假,但又不能把它们都消除掉,它们
湖南理工学院 本科毕业论文
跟整个数学是紧密相连的。所以第三次危机表面上是解决了,实质上更深刻地以其它形式在延续着。
3 数学史的重要意义
3.1科学意义
每一门科学都有发展的历史,作为历史上的科学,不仅有其历史性而且有其现实性。其现实性首先表现在科学概念和方法的延续性方面,今日的科学研究在一定程度上是对历史上科学传统的一种深化与发展,或者是对历史上的科学难题的解决,因此我们无法割裂科学史与科学现实之间的联系。数学科学有着悠久的历史,与自然科学相比,数学更是积累性的科学,概念和方法更具有延续性,比如古代文明中形成的四则运算法则和十进位值制记数法,我们今天仍在使用;诸如哥德巴赫猜想、费尔马猜想等历史上的难题,一直以来都是现代数论领域中的研究热点,数学传统和数学史材料可以在现实数学研究中获得发展。国内外许多著名的数学家都具有深厚的数学史修养或是兼及数学史研究,并善于从历史素材中吸取养分,做到古为今用,推陈出新。中国著名数学家吴文俊早年在拓扑学研究领域取得了杰出的成就,七十年代开始研究中国数学史,在中国数学史研究的理论及方法方面开创了新的局面,尤其是在中国传统数学机械化思想的启发下,建立了被誉作“吴方法”的关于几何定理机器证明的数学机械化方法,他的工作不愧是古为今用,振兴民族文化的典范。
科学史的现实性还表现在为我们当前的科学研究提供了经验教训和历史借鉴,使我们明确科学研究的方向,少走弯路或错路,不仅为当今科技发展决策的制定提供了依据,同样是我们预见科学未来的依据。多了解数学史知识,我们也不会出现诸如解决三等分角作图等荒唐事,可以避免我们在这样的问题上浪费时间和精力。总结中国数学发展史上的经验和教训,对当今中国数学发展不无益处。
3.2 文化意义
美国数学史家M.克莱因曾说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显”。“数学不仅
湖南理工学院 本科毕业论文
是一种方法、一种语言或一门艺术,数学更是一门有着丰富内涵的知识体系,其内容对社会科学家、哲学家、自然科学家、逻辑学家和艺术家十分有用,同时也影响着政治家和神学家的学说”。数学已广泛地影响着人类的生活及思想,是形成现代文化的重要力量。因而数学史是从侧面反映的人类文化史,又是人类文明史最重要的组成部分。许多历史学家利用数学这面镜子,了解古代其它主要文化的特征和价值取向。古希腊数学家强调严谨的推理和由此得出的结论,因此他们并不关心这些成果的实用性,而是教育人们去进行抽象的推理,激发人们对理想与美的追求。通过希腊数学史的考察,就很容易理解为什么古希腊具有很难被后世超越的优美文学、极端理性化的哲学,以及理想化的建筑和雕塑。而罗马数学史告诉我们,罗马文化是外来的,罗马人缺乏独创精神而更注重实用。
3.3 教育意义
当我们学习了数学史之后,自然会有一种这样的感觉:数学的发展并不合逻辑。或者说,数学发展的实际情况与我们今日所学的数学教科书有很大的不同。我们今日中学所学的数学内容大多属于17世纪微积分学以前的初等数学知识,而大学数学学习的内容则基本上是17、18世纪的高等数学。这些数学教材已经过千锤百炼,是在教育要求与科学性相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构、学习要求加以取舍编纂而成的知识体系,这样就必然舍弃了许多数学方法和概念形成的知识背景、演化历程和导致其演化的各种因素,因此仅仅依靠数学教材的学习,难以获取数学的原貌和全景,同时忽视了那些被历史淘汰掉的但或许对现实科学有用的数学材料和方法,而弥补这方面不足的最好途径就是学习数学史。
在一般人看来,数学是一门枯燥乏味的学科,因而很多人将其视其为畏途。从某种程度上说,这是因为我们的数学教科书教授的往往是一些死板的、一成不变的数学内容,如果我们在数学教学中渗透数学史内容而让数学灵活起来,这样就可以大大激发学生的学习兴趣,同时也有助于学生对数学方法、概念和原理的理解与认识的深化。
科学史是一门文理交叉的学科,从当今的教育现状来看,文科与理科的鸿沟导致了我们的教育培养的人才已经越来越不能适应今日自然科学和社会科学高
湖南理工学院 本科毕业论文
度渗透的现代化社会,正是由于科学史的学科交叉性才能显示出其在沟通文理科方面的作用。通过数学史的学习,可以使学数学的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或者其它专业的学生通过学习数学史可以了解数学的概貌,获得数理方面的修养。而历史上数学家的业绩和品德也会在青少年的人格培养方面发挥十分重要的作用。
中国数学历史悠久,14世纪前一直是世界上数学最发达的国家,出现过许多杰出的数学家,取得了很多辉煌的成就,交替影响着世界数学的发展。但由于各种复杂原因,16世纪以后中国落后了,经历了漫长艰巨的发展历程才慢慢汇入现代数学的潮流。由于教育上的失误,导致接受现代数学文明熏陶的我们,常常数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的光辉成就,了解中国近代数学落后的原因、中国现代数学研究的现状、以及与发达国家数学之间的差距,从而激发学生的爱国热情,振兴民族的科学。
4 为什么数学教育需要数学史?
4.1数学家遇到的困难或挫折同样也会为课堂上的学生所经历
米勒认为, 许多重要的数学概念如此缓慢地进入人类的智力生活, 并遭遇重重阻挠,这对于那些初次遇到这些概念的人, 或试图把它们教给他人的人来说是极有意义的。意义何在? 琼斯举例说: 当学生了解到负数概念发展并被人们接受、 使用和理解经过了漫长岁月时,他就不会因自己不理解这个概念而感到特别担心。
M1 克莱因则坚信, 历史上大数学家所遇到的困难,正是学生也会遇到的学习障碍,因而历史是教学的指南:从一流数学诞生开始, 数学家花了 1000年才得到负数概念, 又花了 1000 年才接受负数概念,因此我们可以肯定,学生学习负数时必定会遇到困难, 而且他们克服这些困难的方式与数学家大致也是相同的[2] [3]。另一方面,他认为讲述数学家遭遇困难、 挫折、 失败的经历对学生有着很好的教育意义: / 课本中的字斟句酌的叙述, 未能表现出创造过程中的斗争、 挫折, 以及在建立一个可观的结构之前,数学家所经历的艰苦漫长的道路。而学生一旦认识到这些,他将不仅获得真知灼见,还将获得顽强地追究他所攻
湖南理工学院 本科毕业论文
问题的勇气, 并且不会因为他自己的工作并非完美无缺而感到颓丧。[4]
事实上,数学史告诉我们:数学不过是人类的一种文化活动,人人可学, 人人可做,尽管并非人人都有数学家的才能;而从事这种文化活动的数学家也是平凡的人, 同样会遇到困难、 挫折、 失败。了解这一点, 那么学生就不会为自己在学习过程中所遇困难、 挫折和失败而灰心丧气,甚至错误地认为自己没有数学头脑了。
4.2 学生学习数学的认知过程与数学史的发展过程相似
早在18 世纪,法国实证主义哲学家、 社会学创始人孔德( A. Comte, 1798-
1857) 提出, 个体知识的发生与历史上人类知识的发生必然是一致的。卡约黎认为,如果孔德的理论正确的话,那么数学史对于数学教学来说就是一种十分有效、 不可或缺的工具。[5] 19 世纪, 德国生物学家海克尔( E. Haeckel ,1843- 1919) 提出一个生物发生学定律:“个体发育史重蹈种族发展史”。德国著名数学家 F. 克莱因( F. Klein, 1849- 1925)认为,数学教学至少在原则上要遵循这项定律, 因为科学的教学方法只是诱导人去作科学的思考, 而不是一开头就教人去碰冷漠的、 经过科学洗练的系统。按照历史顺序教授数学,能使学生“看清一切数学观念的产生是如何迟缓;所有观念最初出现时,几乎常是草创的形式,只是经过长期改进,才结晶为确定方法,成为大家熟悉的有系统的形式”。法国著名数学家庞加莱( H. Poincar ,1854- 1912) 主张数学课程的内容应完全按照历史发展顺序展现给读者, 他说: “动物学家坚持认为,在一个短时期内,动物胚胎的发育重蹈所有地质年代其祖先们的发展历史。人的思维发展似乎也是如此。教育工作者的任务就是让孩子的思维经历其祖先之所经历,迅速通过某些阶段而不跳过任何阶段。鉴于此,科学史应该是我们的指南”。匈牙利著名数学家和数学教育家波利亚( G.Plya, 1887 ~1985)则指出: “只有理解人类如何获得某些事实或概念的知识, 我们才能对人类的孩子应该如何获得这样的知识作出更好的判断”。荷兰数学家和数学教育家弗赖登塔尔( H. Freudenthal , 1905~ 1990) 亦持有类似观点,称“年轻的学习者重蹈人类的学习过程,尽管方式改变了”。 [6]
M.克莱因完全赞同上述各家观点, 坚信历史顺序是教学的指南,并以此为依据,对美国当时的新数运动进行了尖锐的批判:“数学家花了几千年时间才理解无
湖南理工学院 本科毕业论文
理数,而我们竟贸然给中学生讲戴德金分割。数学家花了三百年才理解复数, 而我们竟马上就教给学生复数是一个有序实数对。数学家花了约一千年才理解负数, 但现在我们却只能说负数是一个有序自然数对。从伽利略到狄利克雷, 数学家一直绞尽脑汁去理解函数的概念, 但现在却由定义域、值域和有序对(第一个数相同时第二个数也必须相同) 来玩弄把戏。从古代埃及人和巴比伦人开始直到韦达和笛卡儿,没有一个数学家能意识到字母可用来代表一类数,但现在却通过简单的集合思想马上产生了集合这个概念”。
M.克莱因指出:“ 数学绝对不是课程中或教科书里所指的那种肤浅观察和寻常诠释。换句话说,它并不是从显明叙述的公理推演出不可怀疑的结论来”。 [7]算术、 代数、 几何、 三角和微积分都不是通过操作无意义的符号或按规则玩弄游戏而产生的。从历史上看,在曾经鼎盛过的数以百计的文明中,只有一个希腊文明发展起我们今天所崇尚的演绎数学,这就充分说明: 抽象的、 演绎的数学并不是自然的,它远离一般人的思想、 兴趣和行为, 是一门高度复杂、 深奥难懂的学科。历史是一面镜子。无理数、 负数和复数概念以及微积分等学科的历史都说明: 数学家更多地往往是以直观的方法进行思考, 因而在数学教学中,直观方法是主要的,而演绎方法则是一个辅助性的工具。“新数”教材把数学当作一系列严密的演绎结构, 无疑是本末倒置的。
一些美国学者坚信, 指导个体认知发展的最佳方法是让他回溯人类的认知发展1152。即使知识点A 在逻辑上先于知识点B,但如果B 在历史上先于A 出现, 那么我们仍应先教B。
4.3 历史上的数学问题提供了丰富的社会文化信息
美国学者史韦兹( F. J. Swetz) 认为, 用历史来丰富数学教学和数学学习,
一个直接的方法是让学生去解一些早期数学家感兴趣的问题。[8]这些问题让学生回到问题提出的时代, 反映当时人们所关心的数学主题。学生在解决数世纪以前的数学问题时,会经历某种激动和满足。他主张,教师可以搜集历史上不同时期和不同文化的数学问题, 并布置给学生去解决、 比较, 如不同文化背景( 如巴比伦、 中国、 意大利)下的勾股定理应用问题。史氏认为, 从历史上的数学问题中, 学生还可以获得一些文化的和社会的信息。如“给船制作帆布, 每块帆布
湖南理工学院 本科毕业论文
1000平方腕尺,帆高与宽之比为1 比3/2 。问帆高为多少?”从中可以了解到公元前250 年一艘埃及船只桅杆的高度; “当 1蒲式耳小麦值8 里拉时, 面包师傅可制作一块重6盎司的面包;问:当1 蒲式耳值5 里拉时,一块面包重几盎司?”从中可以推出15 世纪威尼斯一块面包的大小; “一位先生劳动一天,得工钱4 元, 每周付伙食费 8 元; 10 周后他挣得144 元;问他空闲的天数和劳动的天数?”从中可以确定内战后美国人12 小时工作日每小时的薪水,等等。
4.4 数学史与数学教育课程整合的意义
将数学史与数学教育课程进行整合, 对强化教师教育课程的整体功能, 促进学生专业成长, 从而更好地适应基础教育课程改革都具有积极的推动作用。 1. 将数学史与数学教育课程整合, 提升“数学史”的教育价值
在数学专业中, 《数学史》课时普遍比较少 (约 30-45课时) , 因而只能以粗拙的大线条略带专题的方式进行教学, 学生难得有深入思考的机会。至于让学生考察数学史在数学教育中的价值与运用就更加不可能。这就导致了一种尴尬局面: 师范生学了“数学史”, 从教后却不能运用数学史搞好数学教育、教学工作。将数学史与数学教育课程整合, 即对《数学史》 、《数学教育学概论》 、《数学教学法》 等课程进行整合性思考, 分析数学史与数学教育的深刻联系, 适当调整课程内容与课程安排, 以提升“数学史”的教育价值, 为德育教育提供舞台。
2. 强化教师教育课程的整体功能, 促进学生的专业成长
将数学史与数学教育课程进行整合, 可以提升数学教育的文化价值, 强化教师教育课程的整体功能: 既优化提升了数学教育类课程的教育效果, 又延伸并服务于基础教育数学课程改革, 促进学生的专业成长, 达到提高学生 “数学专业素养”与“教师职业素养”的目的。 3. 满足普通高中数学新课程标准的需求
在普通高中数学新课程标准的视域下, 将数学史与数学教育课程进行整合, 改革《数学史》课程的设置与教学方案, 加强数学教育整体功能的发挥, 有利于探寻为普通高中数学课程标准服务的“数学史”教育途径, 推进数学教育更好地适应基础教育课程改革, 从而推进自身改革的健康发展。[9]
湖南理工学院 本科毕业论文
5 数学史的教育价值
5.1 有利于激发学生学习数学的兴趣
兴趣是最好的老师。数学的历史背景通常是有趣并且富有启发意义的,它对于提高学生学习数学的积极性是非常有效的。希腊著名几何难题、阿基米德、卡丹、伽罗瓦、高斯等人的故事都是课堂上的精彩有趣的历史话题。在众多的情境中, 可以让学生明白数学并不是一门枯燥无味的学科,而是一门不断进步的生动有趣的学科。[10]让学生了解数学历史文化发展的灿烂进程和中国现代数学的发展,领悟数学家勇于探索、刻苦钻研、为之奋斗终身的精神, 一定会被数学家的惊人毅力、执著精神以及他们取得的巨大成就所折服。榜样的力量是无穷的。浏览一下众多历史伟人的传记,可以从中发现,在影响它们成功的众多因素中,总是包括某些杰出的先驱。特别是对那些最活跃、最具创造性人生的人,其作用更为明显。
5.2 有利于帮助学生理解数学
读史使人明“知”,数学专业知识与历史知识是互补的,专业知识的学习需要历史知识帮助分析与思考。通过数学史的学习,能够帮助学生更好地理解数学。数学家发现数学的时候,是火热地思考着的,一旦研究完毕,呈现在我们面前的则是冰冷的美丽形式。因此我们要通过数学史的说明,了解当时的数学家为什么和如何研究数学。一个明显的例子是古希腊的演绎几何,为什么古希腊人要用公理化方法展开数学?他们所处的时代背景如何中国古代数学的特点和古希腊数学的特征有何不同?弄清这些问题,对学生理解数学很有好处。至于数学教师,如果没有这样的修养,显然很难把数学课上好。
5.3 有利于培养数学思维和方法
数学理论的形成和发展不是单纯的知识、技巧的堆砌,不是单纯的逻辑推导。数学的每一部重大发展,往往伴随着科学认识论的突破和新的思想方法的产生。数学史不仅可以给出某些确定的数学知识, 而且可以给出相应知识的创造性思维过程。而这些对于学生们的思想方法的形成是有启发和培养作用的。它不仅可
湖南理工学院 本科毕业论文
以让学生经历探索思维和创造的体验, 体会数学创造过程的快乐和艰辛, 而且从中可以获得数学思维的规律和方法的启迪, 从而实现对数学知识的深刻理解和灵活运用。波利亚在写他的方法论巨著《数学与合情推理》[11]一书时,不仅参考了他在教学一线研制的《解题表》 ,而且运用了大量的数学历史文献 ,M. 克莱因的《古今数学思想》更明确地告诉我们:重要的数学思想,是在数学历史上逐渐形成的,他同数学的发展密不可分。总之,数学史的“数学思想、方法”的含量,是极为丰富的,致使人们把“数学史”作为“数学方法论”研究的一个重要分支。
5.4 从数学发展的本质对数学教育提供理论指导
我们知道,人类的认识规律是基本一致的,研究前人在学习数学,发现数学中的困难和错误也是现在学生学习的困难和易犯错误。从这个角度考虑改革数学教学。这是最本质的改进与影响。若干年前,美国数学协会(MAA)下属的数学教育委员会曾发出题为《呼唤变革:关于数学教师的数学修养》的建议书,其中呼吁所有未来的教师注意培养自身对各种文化在数学思想的成长与发展过程中所作的贡献有一定的鉴赏能力;对来自各种不同文化的个人在古代、近代和当代数学论题的发展上所作的贡献有所研究,并对中小学数学中主要概念的历史发展有所认识。对于今后的中小学数学史教学,我们应该将数学文化尽可能地结合数学课程的内容,选择介绍一些对数学发展起重大作用的历史事件和人物,反映数学在人类社会进步、人类文明发展中的作用,同时也反映社会发展对数学发展的促进作用。使学生通过数学文化的学习,了解人类社会发展与数学发展的相互作用,认识数学发生、发展的必然规律;了解人类从数学的角度认识客观世界的过程;发展求知、求实、勇于探索的情感和态度;体会数学的系统性、严密性、应用的广泛性,了解数学真理的相对性;提高学习数学的兴趣。
5.5 有利于辩证唯物主义世界观的形成
众所周知,数学内部充满着矛盾,充满着辩证法。从数的角度看,数有大小、整数与分数,运算有加与减、乘与除,随之有正与负、有理与无理、实与虚。从形的角度看,有直与曲、凸与凹、连续与离散,又发展到常量与变量、微分与积分、收敛与发散、有穷与无穷、精确与模糊。正是这些矛盾的运动和转化,才推
湖南理工学院 本科毕业论文
动了数学的发展。数学史上的“ 三次数学危机” 便是这些矛盾运动的缩影。将这些丰富的素材穿插到数学教学中,会使学生感到数学是有血有肉的,对他们的辩证唯物主义世界观的形成会起到促进作用。[12]
5.6 有利于对学生进行爱国主义教育
结合数学学科特点,对学生进行思想品德教育,也是数学教学的目标之一;然而空洞地说教只会使学生产生反感,教师在课堂上给学生讲述数学家艰苦创业、献身数学研究的光辉事迹,既可以满足学生的心理需求,也可以对学生进行爱国主义教育。
中国是世界数学大国,中国的数学成就之高之大世界公认。历史上许多优秀的数学家为了振兴中国的数学,不懈努力奋斗,甚至奉献终身。陈景润在中学时代从当时国立清华大学航空系主任沈云教授那里听到了关于“哥德巴赫猜想”这一引人入胜的故事后,这颗“皇冠上的明珠”深深地吸引着他使他献身于数论研究。在深入钻研了当代很多著名数论论文后,奋然向“哥德巴赫猜想”的顶峰攀登,终于在(1 + 2) 的证明上取得重大突破。华罗庚之所以能够以初中学历成为世界级的数学家和美、德等多国科学院的院士,主要是靠他坚强的意志和为国争光的奋斗目标以及为科学献身的精神。饱含热爱祖国的赤子之心,他毅然放弃国外的优厚待遇,回到祖国,为祖国培养了一批又一批年轻的数学家。还有苏步青教授在中学时就继承了数学老师的思想:“为了救亡图存,必须振兴科学;数学是科学的开路先锋,为了发展科学,必须学好数学。”从此他便立下了“读书不忘救国,救国不忘读书”的座右铭。在日本获得理学博士学位后,谢绝日本东京北帝国大学的聘请,和日本妻子一同返回祖国,为中国近代数学的发展作出了巨大贡献。
5.7 人文教育价值
数学史由折反复的事件构成,事由人所为;发展的每个时期都充满了可歌可泣的故事。为了使学生们学好几何,不怕繁琐和劳累,坚持苦干许多年,终于把大量零碎无序的几何事实和他从老师亚里士多德那里学来的“形式逻辑”串联起来的欧几里得;顶住各方面的压力,甚至不顾老师克隆尼克的坚决反对,发明和
湖南理工学院 本科毕业论文
坚持推进“集合论”的康托;坚持只身奋斗,舍得一身剐,敢把皇帝(欧氏几何是唯一正确的几何的传统观念)拉下马,创立和维护新几何的罗巴切夫斯基;“数学情种”艾尔德什;数学英雄欧拉;坚决捍卫数学完整性的大师级数学家希尔伯特; 靠数学锻造的美丽心灵,从而起死回生的数学家纳什;具有伯乐的敏锐眼光,发现并培养了中国数学大师华罗庚和印度数学奇才拉玛努金的英国伟大的数学家哈代;逻辑大师哥德尔;当代最伟大的世界数学大师陈省身……他们的业绩、他们的精神、他们的奋斗历程,决不单单属于一个国家、一个民族,而是全世界的文化遗产,具有无限的教育价值。以此为素材,实施“数学家人品教育”,“数学情感教育”,“数学人文精神教育”,是大有可为的。
5.8 有利于提高学生的美学修养
数学美指的是数学具有简洁性、对称性、和谐性和奇异性,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉,例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇、印度国王Bhaskara、美国第20任总统Carfield等都给出过它的证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。
6 如何将数学史与数学教育结合
数学史和数学教育怎么结合,在数学教育界也有很多研究。在此,我按照数学史知识在数学教育中的作用将其分为两种类型:辅助型手段和解释型手段。
辅助型手段
湖南理工学院 本科毕业论文
在研究数学史和数学教育的关系时,我们往往把数学史知识当作史料介绍给学生,希望学生能够从中吸取经验,或激发学生学习数学的的兴趣。常常采取的手段有:(1)数学史知识以阅读材料或附录的形式在章末出现,这在国外已有成功的经验。它的优点是既不打破原教材的格局,又能发挥数学史料的作用。(2)以选修课的形式出现,介绍世界数学史,使学生开阔眼界。(3)经常举办一些数学史的专题讲座。选择一些情节生动、发展曲折具有教育意义的专题。[13]在此学习数学史料就当做了进行数学教育的辅助手段。
还有一些学者认为需要改革现行的应试教育考试制度,大力推行素质教育,这样能促使学生更好地学习数学史知识。对此我不敢苟同,毕竟数学史和数学教育还是有主次之分的。不管是哪种方法他们都有一个共同的特点,就是在保证数学史和数学教材各自独立的前提下互相影响。显然这种影响没有深入到学生的认识过程中,对学生的数学学习中理解帮助有限。当然如果要很详细地研究数学史的话,对数学学习是有非常大的帮助,但是对于数学教育和数学史的关系来说则有些主次不清,且增加学生学习负担。不过通过辅助型手段尽管可以促进数学史在数学教育中的作用的实现,但是对于有利于学生理解数学知识的本质,有利于培养学生的思维能力,有利于培养学生的数学研究能力,由于要深入到学生数学学习过程中去,所以辅助型手段就显得有些无力。
解释型手段
要想使学生理解数学知识,则必须解决学生在数学学习过程中出现的疑惑。我们可以采取两种方式来解决:教师解释和教辅解释。
教师解释
在数学学习过程中,数学教师要学生的困惑进行解释,引导学生继续学习。这就要求教师对数学史有很深的了解。绝不能仅仅局限于数学家的故事和数学成果,除了这些之外还要对数学思想和数学理论的演化过程及其发展规律,研究数学家的思维方式和研究方法非常熟悉,这样才能防患于未然,使数学家困惑的数学思想方法和数学知识不至于在学生学习的过程中长时间地困扰学生。例如讲解函数,如果仅仅讲解函数发展过程中的几种不同定义,显然还是不足够的。因为在数学学习过程中函数定义的发展仍然不能代表函数思想方法发展的过程。如果要使学生真正理解函数思想则需要使学生深刻理解未知数、字母表示数、变量以
湖南理工学院 本科毕业论文
及它们之间的关系,然后才能理解函数。这些内容在数学学习过程中跨度很大,在数学史的发展中也有很长时间,所以教师必须时刻从整体上把握对学生的学习进行引导。
教辅解释
教材中所讲述的数学理论经过数百年来的发展和演变已经取得了近乎完美形式,但教材毕竟是教材,既要服从教学大纲的安排,又受数学课时所限,不可能完整地描述出相关的历史发展过程。由于教师水平的差异,课时的局限,所以对于数学学习过程中学生的困惑的解释仍然是不够的。故我们可以用辅导资料把数学史和数学教育结合起来对学生的学习困惑和我们日常所说的以习题训练为主的是有很大区别的。
M·克莱因说:“对学数学的学生来说,通常一些课程所介绍的只是些近乎没有什么关系的数学片断,数学史可以提供整个课程的概貌,不仅使课程的内容互相联系,而且使它们跟数学思想的主干也联系起来。”[14]显然让我们的学生系统深刻地学习数学史是不可能的,那么我们所做的就是把学习数学课程中的思想方法的空白给补充完整。
我们仍然以数学课程为纲,以各个数学知识为基点,把课程中出现的知识产生、发展过程中的思维方式和思想方法的变化给补充出来,以解决学生数学学习中的困惑为目的。如:弧度是怎么来的;为什么圆要分成360等分;无穷大、无穷小和极限的关系等等。在解决这些困惑的过程中展现各种数学思想方法是怎么样渐渐清晰成型的。这样不仅仅能够从数学本身来解决学生的困惑、促进学生的数学理解,而且一旦让学生认识到这些看似完美的数学知识并不是一蹴而就的,将获得顽强地追究所攻问题的勇气。
以上两种解释形式都完全把数学史和数学课程的体系给打破了,所以要想真正做好,还需要进一步的研究。
总而言之,要想把数学教育做好,就必须和数学史结合。尽管结合的方式很多,但是只有深入到学生的数学学习过程中去,找到数学史数学思想方法发展和学生学习数学过程中的认识变化的接合点,才能真正体现数学史的教育价值,而不至于想数学史和数学相关性很低的情况了。
湖南理工学院 本科毕业论文
致谢 本文是在万正苏老师的悉心指导下完成的, 从论文的选题到成稿,都离
不开万老师的帮助与指教,在此对万老师表示衷心的感谢!
湖南理工学院 本科毕业论文
参考文献
[1]蒋永红.数学史与数学学习过程[J] .华中师范大学研究生报,2004-10(11-2). [2]Kline M1 Logic Versus Pedagogy[ J]1 AmericanMathemati calMonthly, 1970, 77( 3) : 264- 2821
[3]Kline M1 A Proposal for the High School Math emat ics Curriculum[ J]1 Mathemati cs Teacher, 1966, 59 ( 4) : 322- 3301
[4] Kline M1 Mathematical Thought from Ancient to Modern Times [ M]1 New York: Oxford Universit y, 19721 iii 1
[5] Cajori F 1 A Hi s tory of Elementary Mathematics[ M] 1 New York: Macmillan, 19171 v1 [6] E rnest P1 Th e Hist ory of Mathemat ics in the Classroom[ J]1Mathematics in School , 1998, 27( 4) : 251
[7] Kline M1 Carl B1 Boyer - in Memoriam[ J] 1 Hi storia Mathematica, 1976( 3) : 387- 3941 [8] Swetz F J 1 Using Problems from the Hist ory of Mathemat i csin Classroom Inst ruct i on[ J]1 Mathemati cs Teacher, 1989, 82( 5) : 370- 3771
[9]胡桂英.黄传军.钟军平.数学史与高师数学教育课程整合摭谈[J] .楚雄师范学院学报,2011-06(26-6).
[10]李媛媛.新课改下数学史的教育价值的认识与实践[N] .广西民族大学学报,2008-06. [11] Polya G. Mathematics and Plausible Reasoning [M].李映山译.北京:科学出版社,1991. [12]于书敏.曲元海.论数学史的教育价值[J].现代教育科学,2006, 1: 01-02. [13]张楠.数学史教育之我见[J].大连教育学院学报,2000(3).
[14]M·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,1979.
因篇幅问题不能全部显示,请点此查看更多更全内容