目录
摘 要 ............................................................................................................ 1 Abstract ....................................................................................................... 2 1 概述 .......................................................................................................... 3 1.1过程控制 ..................................................... 3
1.2串级控制系统 ................................................. 5 1。3 MATLAB软件 ................................................. 6 1。4 MCGS组态软件 ............................................... 7 2 PID控制器原理 .......................................................................................... 9 2.1 PID控制器简介 ............................................... 9 2。2 PID控制系统 ............................................... 10 2.3 PID控制参数的整定及方法 .................................... 11
2。3。1 PID控制参数的整定简介 .............................. 11 2。3.2 PID控制参数整定方法 ................................. 11 3 建立被控对象模型 .................................................................................... 14 3.1 被控对象建模 ............................................... 14 3.2 测量被控对象阶跃响应曲线 ................................... 15 3。3求取被控对象传递函数 ....................................... 16 4 控制方案的设计及仿真 ............................................................................. 21 4.1 设计控制系统框图 ........................................... 21 4.2 Simulink控制系统仿真 ....................................... 22 4.3仿真结果分析 ................................................ 23 4。4 串级控制与单回路控制系统抗干扰性能仿真 .................... 25 5 结论 ........................................................................................................ 28 致谢 ............................................................................................................ 29 参考文献 ..................................................................................................... 30 附录:英语资料及译文 ................................................................................ 31
摘 要
本设计针对锅炉温度控制问题,综合应用过程控制理论以及近年来兴起的仿真技术、计算机远程控制、组态软件,设计了锅炉温度流量串级控制系统.首先,通过实验法建立锅炉的数学模型,得到锅炉温度与进水流量之间的传递函数,通过对理论设计的控制方案进行仿真,得到较好的响应曲线,为实际控制系统的实现提供先决条件。其次,使用智能仪表作为控制器,组建现场仪表过程控制系统,通过参数整定,得到较好现场控制效果。再次,实现积分分离的PID控制算法。
关键词: 水温 流量 串级控制系统 PID控制 仪表过程控制系统 计算机过程控制系统
1
Abstract
The purpose of this thesis is to design the liquid level’s concatenation control system of the double capacity water tank. This design makes full use of the automatic indicator technique ﹑the computer technique﹑the communication technique and the automatic control technique in order to realize concatenation control of water tank’s liquid. First, I carry out the analysis of the controlled objects' model, and use the experimental method to calculate the transfer function of the model .Next, I Design the concatenation control system and use the dynamic simulation technique to analyze the capability of control system。 Afterwards, I design and set up the indicator process control system, realize PID control of the liquid level with intelligence indicator. Finally, I design and set up the long distance computer control system in virtue of the data collection
module
﹑
MCGS
soft
and
digital
PID
controller,accomplish control system experiment and analyze the outcome.
2
1 概述
1.1过程控制
1.工业过程控制的发展概况
自本世纪30年代以来,伴随着自动控制理论的日趋成熟,自动化技术不断地发展并获得了惊人的成就,在工业生产和科学发展中起着关键性的作用。过程控制技术是自动化技术的重要组成部分,普遍运用于石油、化工、电力、冶金、轻工、纺织、建材等工业部门.
初期的过程控制系统采用基地式仪表和部分单元组合仪表,过程控制系统结构大多是单输入,单输出系统,过程控制理论是以频率法和根轨迹法为主体的经典控制理论,以保持被控参数温度、液位、压力、流量的稳定和消除主要扰动为控制目的过程.其后,串级控制、比值控制和前馈控制等复杂过程控制系统逐步应用于工业生产中,气动和电动单元组合仪表也开始大量采用,同时电子技术和计算机技术开始应用于过程控制领域,实现了直接数字控制(DDC)和设定值控制(SPC).
之后,以最小二乘法为基础的系统辨识,以极大值和动态规划为主要方法的最优控制和以卡尔曼滤波理论为核心的最佳估计所组成的现代控制理论,开始应用于解决过程控制生产中的非线性,耦合性和时变性等问题,使得工业过程控制有了更好的理论基础。同时新型的分布式控制系统(DCS)集计算机技术、控制技术、通讯技术、故障诊断技术和图形显示技术为一体,使工业自动化进入控制管理一体化的新模式。现今工业自动化己进入计算机集成过程系统(CIPS)时代,并依托人工智能,控制理论和运筹学相结合的智能控制技术向工厂综合自动化的方向发展.
2.过程计算机控制系统
现代化过程工业向着大型化和连续化的方向发展,生产过程也随之日趋复杂,而对生产质量﹑经济效益的要求,对生产的安全、可靠性要求以及对生态环境保护的要求却越来越高.不仅如此,生产的安全性和可靠性,生产企业的经济效益都成为衡量当今自动控制水平的重要指标。因此继续采用常规的调节仪表(模拟式与数字式)已经不能满足对现代化过程工业的控制要求。由于计算机具有运算速度快﹑精度高﹑存储量大﹑编程灵活以及具有很强的通信能力等特点,
3
目前以微处理器﹑单片微处理器为核心的工业控制几与数字调节器—过程计算机设备,正逐步取代模拟调节器,在过程控制中得到十分广泛的作用。
在控制系统中引入计算机,可以充分利用计算机的运算﹑逻辑判断和记忆等功能完成多种控制任务和实现复杂控制规律.在系统中,由于计算机只能处理数字信号,因而给定值和反馈量要先经过A/D转换器将其转换为数字量,才能输入计算机。当计算机接受了给定值和反馈量后,依照偏差值,按某种控制规律(PID)进行运算,计算结果再经D/A转换器,将数字信号转换成模拟信号输出到执行机构,从而完成对系统的控制作用。
过程计算机控制系统的组成包括硬件和软件(除了被控对象﹑检测与执行装置外).
1.过程计算机系统的硬件部分:
(1)由中央处理器﹑时钟电路﹑内存储器构成的计算机主机是组成计算机控制系统的核心部分,进行数据采集﹑数据处理﹑逻辑判断﹑控制量计算﹑越限报警等,通过接口电路向系统发出各种控制命令,指挥系统安全可靠的协调工作。
(2)包括各种控制开关﹑数字键﹑功能键﹑指示灯﹑声讯器和数字显示器等的控制台是人机对话的联系纽带,操作人员可以通过操作台向计算机输入和修改控制参数,发出操作命令;计算机向操作人员显示系统运行状态,发出报警信号。
(3)通用外围设备包括打印机﹑记录仪﹑图形显示器﹑闪存等,它们用来显示﹑存储﹑打印﹑记录各种数据。
(4)I/O接口和I/O通道是计算机主机与外部连接的桥梁。I/O通道有模拟量通道和数字量通道.模拟量I/O通道将有传感变送器得到的工业对象的生产过程参数(标准电信号)变换成二进制代码传送给计算机;同时将计算机输出的数字控制量变换为控制操作执行机构的模拟信号,实现对生产过程的控制。 2.过程计算机系统的软件部分:
(1)系统软件由计算机及过程控制系统的制造厂商提供,用来管理计算机本身资源,方便用户使用计算机。
(2)应用程序由用户根据要解决的控制问题而编写的各种程序(如各种数据采集﹑滤波程序﹑控制量计算程序﹑生产过程监控程序),应用软件的优劣将影响到控制系统的功能﹑精度和效率。
4
1。2串级控制系统
串级控制是在单回路PID控制的基础上发展起来的一种控制技术。当PID控制应用于单回路控制一个被控量时,其控制结构简单,控制参数易于整定.但是,当系统中同时有几个因素影响同一个被控量时,如果只控制其中一个因素,将难以满足系统的控制性能。串级控制针对上述情况,在原控制回路中,增加一个或几个控制内回路,用以控制可能引起被控量变化的其它因素,从而有效地抑制了被控对象的时滞特性,提高了系统动态响应的快速性。
扰动f2(t) 设定值R e1 主调节器 扰动f1(t) c2 c1 主对象 m1 e2 副调节器 m2 执行器 副对象 - + - 测 量 与 变 送器2 测 量 与 变 送器1 图1。1串级控制系统框图
本系统的串级控制系统如图1。1所示,采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量.
整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成.当扰动发生时,破坏了稳定状态,调节器进行工作。根据扰动施加点的位置不同,分情况进行分析:1)扰动作用于副回路2)扰动作用于主过程3)扰动同时作用于副回路和主过程。在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。
分析可以看到,串级控制系统改善了过程的动态特性、提高了系统控制质量、能迅速克服进入副回路的二次扰动、提高了系统的工作频率、对负荷变化的适应性
5
较强等。其主要工程应用场合有容量滞后较大的过程 、纯时延较大的过程 、扰动变化激烈而且幅度大的过程 、参数互相关联的过程 、非线性过程等。
在设计控制系统的过程中,将利用到MATLAB软件和MCGS组态软件。以下将对它们的主要内容进行说明。
1.3 MATLAB软件
MATLAB软件是由美国MathWorks公司开发的,是目前国际上最流行、应用最广泛的科学与工程计算软件,它广泛应用于自动控制、数学运算、信号分析、计算机技术、图形图象处理、语音处理、汽车工业、生物医学工程和航天工业等各行各业,也是国内外高校和研究部门进行许多科学研究的重要工具。
MATLAB最早发行于1984年,经过10余年的不断改进,现今已推出基于Windows 2000/xp的MATLAB 7.0版本。新的版本集中了日常数学处理中的各种功能,包括高效的数值计算、矩阵运算、信号处理和图形生成等功能。在MATLAB环境下,用户可以集成地进行程序设计、数值计算、图形绘制、输入输出、文件管理等各项操作。 MATLAB提供了一个人机交互的数学系统环境,该系统的基本数据结构是复数矩阵,在生成矩阵对象时,不要求作明确的维数说明,使得工程应用变得更加快捷和便利。
MATLAB系统由五个主要部分组成:
(1)MATALB语言体系 MATLAB是高层次的矩阵/数组语言.具有条件控制、函数调用、数据结构、输入输出、面向对象等程序语言特性.利用它既可以进行小规模编程,完成算法设计和算法实验的基本任务,也可以进行大规模编程,开发复杂的应用程序。
(2)MATLAB工作环境 这是对MATLAB提供给用户使用的管理功能的总称.包括管理工作空间中的变量据输入输出的方式和方法,以及开发、调试、管理M文件的各种工具.
(3)图形图像系统 这是MATLAB图形系统的基础,包括完成2D和3D数据图示、图像处理、动画生成、图形显示等功能的高层MATLAB命令,也包括用户对图形图像等对象进行特性控制的低层MATLAB命令,以及开发GUI应用程序的各种工具。
(4)MATLAB数学函数库 这是对MATLAB使用的各种数学算法的总称.包括各种初等函数的算法,也包括矩阵运算、矩阵分析等高层次数学算法.
6
(5)MATLAB应用程序接口(API) 这是MATLAB为用户提供的一个函数库,使得用户能够在MATLAB环境中使用c程序或FORTRAN程序,包括从MATLAB中调用于程序(动态链接),读写MAT文件的功能。
MATLAB还具有根强的功能扩展能力,与它的主系统一起,可以配备各种各样的工具箱,以完成一些特定的任务。MATLAB具有丰富的可用于控制系统分析和设计的函数,MATLAB的控制系统工具箱(Control System Toolbox)提供对线性系统分析、设计和建模的各种算法;MATLAB的系统辨识工具箱(System Identification Toolbox)可以对控制对象的未知对象进行辨识和建模。MATLAB的仿真工具箱(Simulink)提供了交互式操作的动态系统建模、仿真、分析集成环境。它用结构框图代替程序智能化地建立和运行仿真,适应线性、非线性系统;连续、离散及混合系统;单任务,多任务离散事件系统。
1.4 MCGS组态软件
计算机技术和网络技术的飞速发展,为工业自动化开辟了广阔的发展空间,用户可以方便快捷地组建优质高效的监控系统,并且通过采用远程监控及诊断等先进技术,使系统更加安全可靠,在这方面MCGS工控组态软件发挥着重要的作用.
MCGS (Monitor and Control Generated System) 软件是一套几基于Windows平台的32位工控组态软件,集动画显示、流程控制、数据采集、设备控制与输出、网络数据传输、工程报表、数据与曲线等诸多强大功能于一身,并支持国内外众多数据采集与输出设备,广泛应用于石油、电力、化工、钢铁、冶金、纺织、航天、建筑、材料、制冷、通讯、水处理、环保、智能楼宇、实验室等多种行业.
MCGS组态软件由“MCGS组态环境\"和“MCGS运行环境”两个部分组成。MCGS组态环境是生成用户应用系统的工作环境,由可执行程序McgsSet。exe支持,用户在MCGS组态环境中完成动画设计、设备连接、编写控制流程、编制工程打印报表等全部组态工作后,生成扩展名为.mcg的工程文件,又称为组态结果数据库,其与MCGS 运行环境一起,构成了用户应用系统,统称为“工程” 。
MCGS运行环境是用户应用系统的运行环境,由可执行程序McgsRun.exe支持,以用户指定的方式运行,并进行各种处理,完成用户组态设计的目标和功能。
利用MCGS软件组建工程的过程简介:
7
(1)工程项目系统分析:分析工程项目的系统构成、技术要求和工艺流程,弄清系统的控制流程和测控对象的特征,明确监控要求和动画显示方式,分析工程中的设备采集及输出通道与软件中实时数据库变量的对应关系,分清哪些变量是要求与设备连接的,哪些变量是软件内部用来传递数据及动画显示的。
(2)工程立项搭建框架:主要内容包括:定义工程名称、封面窗口名称和启动窗口名称,指定存盘数据库文件的名称以及存盘数据库,设定动画刷新的周期.经过此步操作,即在MCGS组态环境中,建立了由五部分组成的工程结构框架。
(3)设计菜单基本体系:为了对系统运行的状态及工作流程进行有效地调度和控制,通常要在主控窗口内编制菜单。编制菜单分两步进行,第一步首先搭建菜单的框架,第二步再对各级菜单命令进行功能组态.在组态过程中,可根据实际需要,随时对菜单的内容进行增加或删除,不断完善工程的菜单。
(4)制作动画显示画面:动画制作分为静态图形设计和动态属性设置两个过程。前一部分用户通过MCGS组态软件中提供的基本图形元素及动画构件库,在用户窗口内组合成各种复杂的画面。后一部分则设置图形的动画属性,与实时数据库中定义的变量建立相关性的连接关系,作为动画图形的驱动源。
(5)编写控制流程程序:在运行策略窗口内,从策略构件箱中,选择所需功能策略构件,构成各种功能模块,由这些模块实现各种人机交互操作。MCGS还为用户提供了编程用的功能构件,使用简单的编程语言,编写工程控制程序。
(6)完善菜单按钮功能:包括对菜单命令、监控器件、操作按钮的功能组态;实现历史数据、实时数据、各种曲线、数据报表、报警信息输出等功能;建立工程安全机制等。
(7)编写程序调试工程:利用调试程序产生的模拟数据,检查动画显示和控制流程是否正确.
(8)连接设备驱动程序:选定与设备相匹配的设备构件,连接设备通道,确定数据变量的数据处理方式,完成设备属性的设置.此项操作在设备窗口内进行.
(9)工程完工综合测试:最后测试工程各部分的工作情况,完成整个工程的组态工作,实施工程交接。
8
2 PID控制器原理
2。1 PID控制器简介
PID控制器可以方便地实施多种控制算法,多年以来,在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器),是应用最为广泛的一种自动控制器。它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;选择系统调节规律的目的,是使调节器与调节对象能很好地匹配,使组成的控制系统能满足工艺上所提出的动、静态性能指标的要求。 1、比例(P)调节
纯比例调节器是一种最简单的调节器,它对控制作用和扰动作用的响应都很快速.由于比例调节只有一个参数,所以整定很方便。这种调节器的主要缺点是使系统存在静态误差. 2、积分(I)调节
积分调节器的突出特点是,只要被调量存在偏差,其输出的调节作用便随时间不断加强,直到偏差为零。在被调量的偏差消除以后,由于积分规律的特点,输出将停留在新的位置而不回复原位,因而能保持静差为零。
但是,单纯的积分调节动作过于缓慢,因而在改善静态准确度的同时,往往使调节的动态品质变坏,过渡过程时间内延长,甚至造成系统不稳定。因此在实际生产中,总是把比例作用的及时性和积分作用消除静差的优点结合起来,组成比例积分调节器(简称PI调节器),其传递函数为
Gc(S)=Kp(1+1/T1S)
3、微分(D)调节
微分调节器能在偏差信号出现或变化的瞬间,立即根据变化的趋势,产生强烈的调节作用,使偏差尽可能地消除在萌芽状态之中.但是单纯的微分调节对静态偏差毫无抑制作用,因此不能单独使用,总要和比例或比例积分调节规律结合起来,称为PD调节器和PID调节器。
PD调节器由于有微分的作用,能增加系统的稳定度,比例系数的增加能加快系统的调节过程,减小动态和静态误差,但微分不能过大,以利于抗高频干扰。PD调节器的传递函数为:
9
Gc(S)=Kp(1+TDS)
PID是常规调节器中性能最好的一处调节器.它将比例、积分、微分三种调节规律结合在一起,既可达到快速敏捷,又可达到平稳准确,只要三项作用的强度配合适当,便可得到满意的调节效果。它的传递函数为
Gc(S)=Kp(1+1/T1S+ TDS)
2.2 PID控制系统
比例P r(t) 积分I + + 被控对象 c(t) 微分D
图2。1 PID控制系统结构图
PID控制器是一种线性控制器,它根据给定值r(t)与实际输出值c(t)构成控制偏差e(t),即 e(t)=r(t)—c(t) 将偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对过程对象进行控制,故称为PID控制器.控制规律为: u(t)KP[e(t)或以传递函数形式表示: G(s)1Tite(t)dtTd0de(t)] dtU(s)1kp(1Tds)E(s)Tis 其中Kp-比例系数,Ti -积分时间常数 Td-微分时间常数 10
2。3 PID控制参数的整定及方法
2.3.1 PID控制参数的整定简介
过程控制器采用的控制器通常都有一个或多个需要调整的参数和调整这些参数的相应机构(如旋钮、开关)或相应设备。通过调整这些参数使控制器特性与被控过程特性配合好,获得满意的系统静态与动态特性称为控制器参数整定。由于人们在参数调整中,总是力图达到最佳的控制效果,所以常称“最佳整定”,相应的控制器参数称为“最佳参数整定”.
衡量控制器参数是否最佳,需要规定一个明确的反应控制系统质量的性能指标,一般分为稳态指标和动态指标.需要指出的是,不同生产过程对于控制过程的品质要求不完全一样,因而对系统整定性能指标的选择有较大的灵活性.作为系统整定的性能指标,它应能综合反映系统控制质量,同时又便于分析与计算。
2。3。2 PID控制参数整定方法
控制器参数的整定方法很多,归纳起来可分为两大类,理论计算整定法与工程整定法。顾名思义,理论计算整定法是在已知过程的数学模型基础上,依据控制理论,通过理论计算来求取“最佳整定参数”;而工程整定法是根据工程经验,直接在过程控制系统中进行的控制器参数整定方法.由于无论是用解析法或实验法求取的过程数学模型都只能近似反映过程的动态特性,因而理论计算所得到的整定参数值可靠性不够高,在现场使用中还需进行反复调整。相反工程整定法虽未必得到“最佳整定参数”,但由于其不需知道过程的完整数学模型,使用者不需要具备理论计算所必须的控制理论知识,因而简便、实用,易于被工程技术人员所接受并优先使用。
下面将介绍本次设计中在现场调试调节器参数时所采用的一种整定方法,现场经验整定法。这种方法是人们在长期的工程实践中,从各种控制规律对系统控制质量的影响的定性分析中总结出来的一种行之有效,并且得到广泛运用的工程整定方法.
(1)经验法
若将控制系统液位、流量、温度和压力等参数来分类,则属于同一类别的系统,其对象往往比较接近,无论是控制器形式还是所整定的参数均可相互参考。表2。1为经验法整定参数的参考数据,在此基础上,对调节器的参数作进一步修正。
11
若需加微分作用,微分时间常数按TD=(1/3 ~1/4)TD计算。
表2—1经验法整定参数
系统 温度 流量 压力 液位 δ(%) 20~60 40~100 30~70 20~80
参 数 T1(min) 3~10 0.1~1 0。4~3 TD(min) 0。5~3 (2)临界比例度法
这种整定方法是在闭环情况下进行的。设T1=∞,TD=0,使调节器工作在纯比例情况下,将比例度由大逐渐变小,使系统的输出响应呈现等幅振荡,如图2。2所示.根据临界比例度δs和振荡周期Ts,按表二所列的经验版式,求取调节器的参考参数数值,这种整定方法是以得到4:1衰减为目标。
图2.2具有周期Ts的等幅振荡图 表2—2临界比例度法整定调节器参数 调节器参数 调节器名称 P PI PID δ(%)s 2δs 2.26δs 1.6δs T1(S) Ts/1。2 0.5Ts TD(S) 0.125Ts (3)阻尼振荡法(衰减曲线法)
12
在闭环系统中,先把调节器设置为纯比例作用,然后把比例度由大逐渐减小,加阶路扰动观察输出响应的衰减过程,直至出现图2。3所示的4:1衰减过程为止.这时的比例度称为4:1衰减比例度,用δs表示之。相邻两波峰间的距离称4:1衰减周期Ts。和Ts,运用表三所示的经验公式,就可计算出调节器预整定的参数值。
图2.3 4:1衰减曲线法图 表2。3阻尼振荡法计算公式 调节器参数 调节器名称 P PI PID δ(%) δS 1。2δs 0.8δs TI(min) 0。5TS 0.3TS TD(min) 0。1TS 13
3 建立被控对象模型
3。1 被控对象建模
本系统以锅炉水温为主要控制对象,以进水流量为辅助控制对象。目的是在一定加热功率下,控制水温的恒定。其流程图如图3。1所示:
图3.1 测量被控对象阶跃响应流程图
由温度传感器(主检测变送器)将温度信号转变为电信号与温度给定值相比较后送至主控制器,主控制器输出流量控制值与流量变送器(副检测变送器)反馈回来的进水流量信号相比较后输入流量调节器(副控制器),由流量调节器控制调节阀的开度来控制进水流量,由此来对锅炉水温进行定值控制。其系统框图如图3。2所示:
流量扰动 温度给定值 温度扰动 e1 主控制器 m1 + e2 流量调节器 m2 调节阀 流量 c2 水温 温度输出值
- - 流 量 变 送 器 水 温 传 感 器 图3。2 锅炉水温与流量串级控制系统框图
在控制系统设计工作中,需要针对被控过程中的合适对象建立数学模型。被
14
控对象的数学模型是设计过程控制系统、确定控制方案、分析质量指标、整定调节器参数等的重要依据.被控对象的数学模型(动态特性)是指过程在各输入量(包括控制量和扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。
在水温—流量串级控制系统中,我们所关心的是如何在一定的电热功率下控制好水温的恒定。进水流量是系统的被控对象,必须通过测定和计算他们模型,来分析系统的稳态性能、动态特性,为其他的设计工作提供依据。
3.2 测量被控对象阶跃响应曲线
在本设计中通过实验建模的方法,分别测定被控对象温度和流量在输入阶跃信号后的响应曲线和相关参数。
在测定模型参数中可以通过以下两种方法控制调节阀,对被控对象施加阶跃信号:
(1) 通过智能调节仪表改变调节阀开度,实现对被控对象的阶跃信号输入。 (2) 通过在MCGS监控软件组建人机对话窗口,改变调节阀开度,实现对被控对象的阶跃信号输入,本次实验采用后者。
阶跃输入信号 供水 电动磁力泵 电动调节阀 控制进水量 温度 图3.3 水温—流量模型测定原理图
阶跃响应输出
编写程序如下: 流量pv=pv1
温度pv=pt /测量值显示输出 If set=0 then Output=6
Endif / set为0时输出6mA电流给调节阀 If set=1 then Output=8
Endif / set为1时输出8mA电流给调节阀 其中set为外部输入信号,可由按钮设定,Output为输出信号,大小即为输出电
15
流值,单位mA。电动调节阀输入信号范围为4-20mA电流信号。这样就可以实现电动调节阀阶跃信号给定。6mA电流对应电动调节阀开度为(6-4)/(20-4)=12.5%.8mA电流则对应(8-4)/(20-4)=25%的开度。阶跃前后流量测量值分别为6.5和10.2。阶跃值为10。2—6.5=3。7。实际测得阶跃如图3。4:
图3。4试验测得阶越响应曲线
从阶跃时刻起以20s为采样周期,采得温度数据序列如下:
33。71 33.34 32。87 32。90 32。12 32.01 31.76 31。56 31。80 31.32 31.69 31。53 31.16 31。20 30.98 31.09 30。57 30。91 30。90 30。58 30.32 30.33 30。25 30。25 30.24 30。48 30。10 30。16 29。85 30。31 30。09
当给出阶跃信号后,温度响应曲线逐渐下降至稳定,为符合一般习惯,方便处理,将数据以第一次采样值为标准,转换为逐渐上升至稳定的曲线。转换方法y=33。71-x。式中y为处理后数据,x为处理前数据。得到如下数据序列: 0 0。37 0。84 0。81 1。59 1.70 1.95 2。15 1。91 2。39 2。02 2.18 2.55 2.51 2.73 2.62 3.14 2.80 2。81 3.10 3.39 3.38 3.46 3。46 3.47 3。43 3。61 3.55 3.86 3。40 3。62
另外由试验测得给定阀的开度分别为12.5、25、40、80时对应传感器测得流量值为6。5、10.2、14。6、26。2。
3.3求取被控对象传递函数
由于实验测定数据可能存在误差,直接使用计算法求解水箱模型会使误差增
16
大.所以使用MATLAB软件对实验数据进行处理,根据最小二乘法原理和实验数据对响应曲线进行最佳拟合后,再计算水箱模型。
实验数据中将阶跃响应初始点的值作为Y轴坐标零点,后面的数据依次减去初始值处理,作为Y轴上的各阶跃响应数据点;将对应Y轴上阶跃响应数据点的采集时间作为曲线上各X点的值.
在MATLAB的命令窗口输入曲线拟合指令: >〉 x=0:20:600;
>〉 y=[0 0。37 0。84 0.81 1.59 1.70 1。95 2。15 1.91 2。39 2。02 2.18 2。55 2。51 2.73 2.62 3.14 2。80 2。81 3。10 3。39 3.38 3.46 3.46 3.47 3。43 3.61 3.55 3.86 3.40 3.62];
>〉 p=polyfit(x,y,4); 〉〉 xi=0:20:600; 〉> yi=polyval(p,xi); >〉 plot(x,y,xi,yi) 在MATLAB中绘出曲线如下:
图3.5流量阶跃响应拟合曲线
如图所示,利用四阶多项式近似拟合上水箱的响应曲线,得到多项式的表达式:
P(t)≈-1.5723e(—10)t4+2。0754e(—7)t3-9。8826e(-5)t2+0.024429t—
0.030998
其中,t的一次项的系数为0。024429,即函数在零点处(t=0)的切线斜率为
17
k=0。024429.再利用切线法,算出传递函数:
K0T0y()y(0)3.500.95
x03.7y()y(0)3.5143.27 k0.024429K0为传递函数的放大系数,y()为稳定值,y(0)为初值,x0为阶跃的扰动值,大小为3。7,k为零点处的斜率。
计算结果开环传递函数:
G2(s)K00.95 (T0s1)143.27s1由试验测得给定阀的开度分别为12.5、25、40、80时对应传感器测得流量值为6.5、10。2、14.6、26.2,综合仿真效果选用1次函数拟合阀的流量特性,以下为拟合程序:
x=[12.5 25 40 80]
y=[6.5 10。2 14.6 26.2] p=polyfit(x,y,1); xi=[12。5 25 40 80]; yi=polyval(p,xi); plot(x,y,xi,yi)
可得电动调节阀增益曲线如下:
图3.6 调节阀增益曲线
从而可得电动调节阀增益K10.30,考虑到从给出阀的控制信号到调节阀响
18
应,再影响流量,实际是个微小的惯性环节,但由于时间常数相对锅炉非常小,对控制的影响不大,在本设计中忽略不计。
为进一步检验该传递函数的正确性,使用simulink仿真,组建如下系统:
图3。7检验传递函数仿真系统
阶跃信号幅值设为3.7,采样时间为20s,仿真时间600s.阶跃信号源(step)给出阶跃信号,作用于被控对象传递函数(Transfer Fcn)结果输出到示波器,仿真后由示波器所观察到结果如图:
图3.8检验传递函数仿真曲线
为将图3.5和图3.8内两条曲线在同一张图内绘制以便比较,程序如下: 〉> x=0:20:600;
>〉 y=[0 0.37 0.84 0.81 1.59 1.70 1.95 2.15 1.91 2。39 2.02 2.18 2。
19
55 2。51 2。73 2.62 3。14 2。80 2。81 3.10 3。39 3。38 3.46 3.46 3.47 3。43 3.61 3。55 3.86 3.40 3.62];
>〉 p=polyfit(x,y,4); 〉〉 xi=0:20:600; >〉 yi=polyval(p,xi); >> plot(x,y,x,a,xi,yi)
数列a中的数据是以步长20s仿真600s得到的,因此含有31个数据,a与拟合结果步长相同,由于两阶跃曲线给定阶跃信号幅值相同,可认为两条曲线所在坐标系相同,得到图3。9:
图3.9 拟和曲线与仿真曲线比较
仿真曲线仅在200—400s间误差较大约为10%,导致误差的原因可能是拟合时以二次曲线一部分取代惯性环节造成的,也可能是由于传感器测量误差导致的。误差在接受范围内,仿真曲线基本能反映数据曲线的变化,因而可以认为传递函数基本准确。
20
4 控制方案的设计及仿真
有了被控对象的传递函数就可以确定控制方案,从而在理论上设计控制器,对系统进行仿真,进而对实际控制起指导意义.
4。1 设计控制系统框图
控制系统框图是控制系统实现的前提条件,它根据控制工艺的具体流程,反映系统信息的流动控制过程,本设计采用串级控制,考虑流量变化快,时间惯性小,应较快得到抑制,选择流量作为副被控参数,副环是随动控制,追求快速性,因而采用P调节,P调节器输出信号控制阀的开度改变流量,流量传感器将检测信号送回P调节器并形成负反馈,此闭环作为内环。温度变化相对缓慢,时间惯性大,作为主被控参数,主环是定值控制,追求准确性,采用PID调节。经分析可得控制工艺流程图:
图4.1 控制系统结构图
21
通过流程图可知:将给定值与温度传感器反馈信号的差值输入主调节器,进行PID运算,实现控制算。主调节器输出信号作为内环的给定值,与流量传感器反馈信号的差值送P调节器运算并输出,以控制调节阀,通过流量变化,影响锅炉温度。得到控制系统框图:
-- 给定值
图4.2控制系统框图 流量 4.2 Simulink控制系统仿真 Simulink可以动态地模拟出在给多种信号作用下所构造控制系统的响应,只需将控制系统框图内对象改写为传递函数形式.
模拟PID控制器的传递函数D(s)=U(s)/E(s)=Kp(1+1/TiS+TdS)可理解为同一信号分别经比例(图4。3中fcn1)、积分(图4.3中fcn2)、微分(图4.3中fcn3)运算后相加;P调节器为纯比例环节(图4.3中fcn4);锅炉传递函数已求得(图4。3中fcn);首先假设调节阀为纯比例环节(图4.3中fcn5),可构造如下系统图,其中PID、P、阀的参数均未整定:
图4。3 simulink控制系统线性仿真
考虑到实际使用中,由于阀有动作死区,即位于0开度时可能有流量或小开度时无流量,达到最大开度时,控制信号尽管继续增大但已经失去调节作用等原因(图4.5中阀的流量特性可说明),结合图4.6测得阀的流量特性,将阀的传递函数作为非线性环节处理,得到非线性系统图:
22
图4.4 simulink控制系统非线性仿真
图4。4中PID、P参数已经整定,Saturation和Coulomb&Viscous friction两个环节组合形成阀的流量特性。Saturation为限幅环节,上限幅值为100,下限幅值为0,Coulomb&Viscous friction为粘滞摩擦环节,函数设为y=0。30x+2.9。
4.3仿真结果分析
通过参数的调节可以得到较好的响应曲线。
图4.5 控制系统仿真响应曲线
图4。5中的响应曲线是在阶跃信号初值0,终值20,阶跃时刻为0;主调节
K7.5TI40TD5K20器参数为p;副调节器参数为p;仿真时间2000s时得到的。
23
余差(静态偏差)C: 是系统过渡过程终了时给定值与被控参数稳态值之差。由于仿真环境为理想状态,未考虑实际运行时可能出现的各种情况,余差必然为零.
衰减率Ψ :是衡量系统过渡过程稳定性的一个动态指标。可定义为
B1B2B12,系统只有一个波峰,不存在震荡,因而可认为衰减比为0,B1B1Ψ=1。
最大偏差A (超调量σ):对于定值系统来说,最大偏差是指被控参数第一个波的峰值与给定值的差,随动系统通常采用超调量指标,即
y(tp)y()y()100%,由图知最大偏差约为0。6,超调量为3%.
过渡过程时间 ts: 是指系统从受扰动作用时起,到被控参数进入新的稳定值±5%的范围内所经历的时间,是衡量控制快速性的指标。由图知,ts≈220s时对应值20。6,即进入稳定值±5%的范围内,可认为过渡完成。
综合动静态指标,可认为阶跃响应曲线相当理想,但由于是仿真结果,未考虑模型精确度,测量精度,以及真实系统中所存在的未知干扰等问题,只可作为设计参考,调节器参数、实际响应曲线未必与仿真一致,实际控制中可能达不到这么好的控制效果.
通过仿真参数的调节也得到了PID控制器参数对控制效果的影响。 比例控制Kp对系统性能的影响:比例系数KP加大使系统的动作灵敏,响应速度加快,稳态误差减小,KP偏大,振荡次数加多,调节时间加长。KP太大时,系统会趋于不稳定。KP太小,又会使系统的动作缓慢。KP可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。如果KP的符号选择不当,对象状态(PV值)就会离控制目标的状态(SP值)越来越远,如果出现这样的情况KP的符号就一定要取反。
积分控制KI对系统性能的影响:积分作用使系统的稳定性下降,KI小(积分作用强)会使系统不稳定,但能消除稳态误差,提高系统的控制精度.
微分控制KD对系统性能的影响:微分作用可以改善动态特性,KD偏大时,超调量较大,调节时间较短.KD偏小时,超调量也较大,调节时间较长。只有KD合适,才能使超调量偏小,减短调节时间。
24
4。4 串级控制与单回路控制系统抗干扰性能仿真
为了体现串级控制的优势,必须将串级控制系统的抗干扰能力和单回路控制系统的抗干扰能力加以比较.
图4。6串级控制抗干扰能力测试系统结构
图4。7 单回路控制抗干扰能力测试系统结构
串级控制的特点在于抗二次干扰能力强,因此分别构造图4.6,在串级控制系统副回路中加入阶越信号来模拟流量的干扰,同时为了能够将数据与单回路控制系统抗干扰效果在同一张图内进行相比较,需要设置工作区域B,存储方式为数列。
单回路控制系统是采用PID控制器直接控制流量.在同样位置加入流量的阶跃干扰信号,将仿真结果输出到工作区域C中, 存储方式为数列.
只有当单回路控制系统的阶越响应曲线与串级控制系统的阶越响应曲线比较近似,并施加同样的干扰信号,其抗干扰能力才具有可比性。在无干扰信号时,调节单回路控制系统参数,使响应曲线接近同样阶跃信号作用下串级控制系统响应曲线。
再加入干扰信号,对于图4。6和图4。7中的两个控制系统仿真,其仿真时间均设为4000s,采样时间设为20s。干扰信号阶越时刻为2000s,阶越初值0,阶越终值18。
仿真后结果分别存储于工作区域B、C中,将两系统响应数据在同一张图内
25
进行比较,需在Matlab中编写程序如下:
x=0:20:4000; plot(x,b,x,c) grid
图4。8 两种控制系统抗干扰能力比较图
图4.8、4。9、4。10中绿色曲线是单回路控制系统响应曲线,蓝色曲线是串级控制系统响应曲线.首先放大图中两系统阶跃响应部分,在图4。9中可见两控制系统在上升段基本重合,调节时间基本相同,单回路控制系统阶跃响应超调量偏大,综合各种指标可认为两系统在阶跃信号下控制效果大致相同。在两控制系统控制效果相同的情况下,加入干扰信号,如图4。10,单回路控制系统在干扰信号的作用下,最大偏差达到0。4,为稳态值的2%,在曲线末端甚至出现小幅度波动.而串级控制系统在干扰信号的作用下,最大偏差仅在0。1左右,可认为系统仍处于的特点稳定状态,两者抗干扰能力十分悬殊。充分证明了串级控制抑制二次干扰能力强.
26
图4。9 两种控制系统阶越响应比较图(放大)
图4.10 扰动时刻响应曲线(放大)
27
5 结论
28
致谢
首先,我要衷心感谢我的指导老师孙虹老师,没有她的悉心指导,我也不会这么顺利的完成我的毕业设计。其次,我要感谢我的母校,四年来,在母校的栽培下,使我顺利的完成了学业,并且给我的学生时代划上了完美的句点.最后,我要感谢我的父母,是他们的无私奉献供养了我上大学,我才会有今天的成绩,衷心的感谢他们!
本次毕业设计从一接到任务书,就在孙虹老师的悉心指导下,还有我自己的查阅资料,我了解到了串级控制的作用,还有PID控制的作用,也知道了MATLAB软件使得工程应用变得更加快捷和方便。同时了解综合应用过程控制理论以及近年来兴起的仿真技术、计算机远程控制、组态软件,设计了锅炉温度流量串级控制系统。从而一步步的顺利完成任务。在此过程当中,我学到了很多有用的东西,让我把整个本科知识又回顾了一遍,为以后进入社会打下了良好的基础,同时在查阅资料的过程当中也学到许多,新的或者以前未掌握的知识,在此,我要感谢学校能够给我这次毕业设计的机会,让我从中受益匪浅。
29
参考文献
[1] 胡寿松主编.自动控制原理(第五版)。科学出版社.2007 [2] 张晓华主编。控制系统数字仿真与CAD.机械工业出版社。1999 [3] 于海生主编。计算机控制技术。 机械工业出版社。2007
[4] 刘文定,王东林主编.过程控制系统的MATLAB仿真。 机械工业出版社。2009
[5] 薛定宇主编.控制系统计算机辅助设计——MATLAB语言与应用。清华大学出版社。2006
[6] The Math Works.Icn 《MATLAB HELP》 2004 [7] ICP DAS 《User Manual》 2000
[8] 邵裕森,戴先中 《过程控制工程》 北京 机械工业出版社 2000
30
附录:英语资料及译文
About PID control
Recently automation technology is based on the concept of feedback. Elements of feedback theory consist of three parts: measurement, comparison and implementation. Measurement variables of concern, compared with expectations, with the control system to correct the error response。
The theory and application of automatic control, the key is to make the correct measurement and comparison of how best to rectify the system。
PID (proportional - integral — differential) controller as the first practical use of the controller more than 50 years of history, is still the most widely used industrial controller. Simple PID controller, the use of the system does not accurately model a prerequisite that they have become the most widely used controller.
PID controller is the proportion of cells (P), integral unit (I) and the differential unit (D) component。
Because of its wide range of uses, the use of flexible, has been serialized products, the use of only three parameters setting (Kp, Ti and Td) can be。 In many cases, does not necessarily need all three modules, which can take 1-2 unit, but the proportion of the control unit is essential.
First of all, PID broad range of applications. Although many industrial processes or time-varying non-linear, but can be simplified through their basic non-linear and dynamic characteristics of the system over time, so that you can control the PID.
Secondly, PID parameter can tune easier。 That is, PID parameters Kp, Ti and Td can be based on the dynamic characteristics of the process of setting a timely manner. If the dynamic characteristics of the process of change, for example, changes may be caused by the load dynamic characteristics of the system changes, PID parameters can be re-tuning。
Third, PID controller in practice is to be improved continuously, the following are two examples of improvements.
31
In factories, we always see a lot of loops are in manual, and because of the difficulty of the course so that the ”automatic” mode, a smooth working. As a result of these deficiencies, the use of the industrial control system PID is always subject to product quality, safety, waste production and energy problems。 PID parameter self—tuning PID parameters in order to deal with this problem setting generated. Now, the auto—tuning or self—tuning of PID controller is a business single-loop controllers and distributed control system of a standard.
In some cases the system—specific design of PID controller to control very well, but they are there are still some problems to be solved:
If self—tuning should be based on the model, in order to re-PID tuning parameters online to find and maintain a good process model is more difficult。 When closed—loop works, the requirements in the process of inserting must have a test signal。 This method will cause disturbance, so model—based PID parameter self—tuning is not too good in the industrial applications。
If self-tuning control law based on the often difficult to load disturbance caused by the impact and dynamic characteristics of the process of the impact of changes in the distinction between the effects of so disturbed overshoot controller will have to create a self—adaptive unnecessary conversion。 In addition, since the control law based on the maturity of the system is not the stability of analytical methods, the reliability of parameter tuning, there are many problems。
Therefore, many self—tuning PID controller parameters work in the auto-tuning mode and not in the self-tuning mode。 Auto-tuning is often used to describe the state of open—loop based on a simple process model to determine automatic calculation of PID parameters.
PID in controlling nonlinear, time—varying, coupling and parameter uncertainty and structural complexity of the process, the work is not very good。 The most important thing is, if the PID controller can not control the complexity of the process, regardless of how not to use transfer parameters。
Despite these shortcomings, PID controller is sometimes the most simple is the best controller.
At present, the level of industrial automation has become a measure of the level of modernization in all walks of life an important sign. At the same time, the development of
32
control theory has also experienced a classical control theory, modern control theory and intelligent control theory of three stages。 Classic example of intelligent control is ambiguous, such as full-automatic washing machine。 Automatic control system can be divided into open—loop control systems and closed-loop control system。 A control system, including controllers, sensors, transmitters, implementing agencies, input and output interfaces。 Controller's output after the output interface, the implementing agencies, added to the system was charged with; control system charged with the amount, after the sensor, transmitter, through the input interface to the controller。 Different control system, the sensor, transmitter, the executing agency is not the same. For example pressure sensors need to be used in pressure control system. Electric heating control system is the sensor temperature sensor. At present, PID control and PID controller or a smart controller (instrument) has a lot of products have been in practice in engineering is widely used, there are a wide range of PID controller products, major companies have developed with PID parameter self-tuning regulator function smart (intelligent regulator), which the PID controller parameters are automatically adjusted through the intelligent or self-tuning, adaptive algorithms to achieve. PID control are achieved using pressure, temperature, flow, liquid level controller, PID control functions to achieve the programmable logic controller (PLC), also enables the PC system, PID control and so on. Programmable Logic Controller (PLC) is the use of its closed-loop control module to achieve PID control, and programmable logic controller (PLC) can be connected directly with the ControlNet, such as Rockwell's PLC—5 and so on. There can be the controller PID control functions, such as Rockwell’s Logix product line, it can be connected directly with the ControlNet, using the Internet to achieve its long-range control functions.
1, Open-loop control system
Open—loop control system is the object of the output (volume control) on the controller does not affect the output。 In this control system, do not rely on volume will be charged back to the formation of anti—any closed—loop circuit.
2, Closed-loop control system
Closed—loop control system is characterized by the output of the system object (volume control) will be sent back to the impact of anti—output controller to form one or more of the closed—loop。 Closed—loop control system has positive feedback and negative feedback, if the
33
feedback signal and the system to set the value of the signal the other hand, is referred to as negative feedback, if the same polarity is called positive feedback, the general closed-loop control system using negative feedback, also known as negative feedback control system。 Closed-loop control system has many examples. For example, people with negative feedback is a closed—loop control system, the eye is the sensor to act as a feedback, the human body system through the constant variety of the right to make amendments to the final action。 If there are no eyes, there is no feedback loops, it became an open-loop control system. Another example, when a full—automatic washing machine with a real continuously check whether the washed clothing, and wash off automatically after the power supply, it is a closed-loop control system.
3, Step response
Step response refers to a step input (step function) when added to the system, the system output。 Steady-state error is the system response into the steady—state, the system’s desired output and actual output of the difference. The performance of control system can be stable, accurate and fast three words to describe. Stability is the stability of the system, a system must be able to work, first of all must be stable, from the step response should be a convergence point of view; quasi-control system refers to the accuracy, control precision, stability is usually state error description, it said the system output steady—state value and the difference between expectations; fast control system refers to the rapid response, and usually to a quantitative description of the rise time。
4, Theory and the characteristics of PID control
In engineering practice, the most widely used control laws regulate the proportional, integral, differential control, referred to as PID control, also known as PID regulator。 PID controller has been available for nearly 70 years of history, which in its simple structure, stable, reliable, easy to adjust and become the main industrial control technologies. When charged with the structure and parameters of the object can not completely grasp, or lack of accurate mathematical model, control theory it is difficult using other techniques, the system controller structure and parameters have to rely on experience and on-site testing to determine when the application PID control of the most convenient technology. That is, when we do not fully understand the system and charged with an object, or can not be an effective means of measuring system parameters to obtain the most suitable PID control technology. PID control, in practice
34
there are PI and PD control。 PID controller is the error of the system, using proportional, integral, differential calculation for the control of the volume control。
The ratio of (P) control
Proportional control is one of the most simple control methods。 The controller's output and input error signal proportional to the relationship。 The output has the existence of steady—state error when there is only a proportional control system。
Integral (I) control
In integral control, the controller's output and input error signal is proportional to the integral relationship. For an automatic control system, if steady-state error exists after entering the steady-state, the control system is referred to as steady—state error or having a poor system。 In order to eliminate steady-state error, the controller must be the introduction of the \"key points。\" Points of error depend on the time of the points of the increase over time, will increase the integral term. In this way, even if the error is very small, integral term will increase as time increases, it increased to promote the output of the controller so that steady-state error further reduced until zero. Therefore, the proportional + integral (PI) controller, you can make the system after entering the steady-state non-steady—state error。
Differential (D) control
In the differential control, the controller's output and input of the differential error signal (the rate of change of error) is directly proportional to the relationship。 Automatic control system to overcome the errors in the adjustment process may be unstable or even oscillation. The reason is because of greater inertial components (links) or there is lag components, can inhibit the role of error, the changes always lag behind changes in error. The solution is to inhibit the changes in the role of error ”in advance”, that is close to zero in the error and suppress the role of error should be zero. This means that the controller only the introduction of the \"proportion” of often is not enough, the proportion of the role is only to enlarge the amplitude error, the current need to increase the \"differential item” that can change the trend of prediction error, In this way, with the proportion of + differential controller, will be able to advance so that the role of inhibitory control error equal to zero or even negative, thus avoiding the amount charged with a serious overshoot. Therefore, greater inertia of the charged object or lag, the proportion of + differential (PD) controller to improve the system in the regulation of the dynamic characteristics
35
of the process.
PID控制简介
当今的自动控制技术都是基于反馈的概念.反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。
PID(比例-积分—微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器.PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成. 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp, Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。
首先,PID应用范围广.虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。
其次,PID参数较易整定.也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定.如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。
第三,PID控制器在实践中也不断的得到改进,下面是两个改进的例子. 在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰.PID参数自整定就是为了处理PID参数整定这个问题而产生的.现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。
在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:
36
如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。闭环工作时,要求在过程中插入一个测试信号。这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。
如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。
因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式.自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数.
PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用.
虽然有这些缺点,PID控制器是最简单的有时却是最好的控制器 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等.自动控制系统可分为开环控制系统和闭环控制系统.一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的.比如压力控制系统要采用压力传感器.电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司都开发了具有PID参数自整定功能的智能调节器 (intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5
37
等。还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、开环控制系统
开环控制系统是指被控对象的输出(被控制量)对控制器的输出没有影响.在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统
闭环控制系统的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈,若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统.另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 3、阶跃响应
阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差.控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性,一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述. 4、PID控制的原理和特点
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一.当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数
38
时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制.PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的.
比例(P)控制
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。
积分(I)控制
在积分控制中,控制器的输出与输入误差信号的积分成正比关系.对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差.
微分(D)控制
在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳.其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化.解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 “比例\"项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。
39
因篇幅问题不能全部显示,请点此查看更多更全内容