(Bi1.7Pb0.3Sr2Ca2Cu3O4)
J.G.Chigvinadze,A.A.Iashvili,T.V.Machaidze
E.AndronikashviliInstituteofPhysics,380077Tbilisi,Georgia
(February1,2008)
Abstract
Usingthehigh-sensitivemechanicalmethodofmeasuring[1]thedissipationprocessesinsuperconductors,the3D-2Dphasetransitioninmagneticfieldwasinvestigatedinthevortexlatticeofstronglyanisotropichigh-temperaturesuperconductorsofBi(2223)system.Itwasshownthatwiththeincreaseofexternalmagneticfieldthedissipationconnectedwithamotionofvortexesrelativetothecrystallatticeofasample,firstincreases,reachingthemaxi-mumandthenwithafurtherincreaseofthemagneticfieldsharplyreducesasaresultofpinningenhancementinconnectionwiththetransitionofthree-dimensionalvortexsysteminquasi-two-dimensional”pancake”one.PACSnumber:74.60.-w,74.60.Ge,74.80.Dm
TypesetusingREVTEX
1
Withahelpofcomputercalculationsitwasshownrecentlyin[2]thatinthelayeredhigh-temperaturesuperconductorsofBCCOsystemthedisintegrationofthree-dimensionalvortexesinto”pancake”ones-theso-called3D-2Dtransitioncouldtakeplace.
Thistransitionmustbeaccompaniedbyasharpincreaseofcriticalcurrentthatinitsturnmeansasharpincreaseofapinningforceaccompanyingthedisintegrationofvolumevortexesinto”pancake”-likeones.Thisalsoshouldstronglyaffectthedissipationprocessesaccompanyingthemotionofvortexsystem.
Naturally,atthistransition,asaresultoftheincreaseofthepinningforce,theenergyofdissipationshouldalsosharplydiminish.
Ifonemeasuresthelossesinavortexsystemtheirstrongdecreasewouldbeobtainedatthe3D-2Dtransition.
Theexperimentoninvestigationsofsuchtypephenomenawasmadebyususingtheorientedlayeredhigh-temperaturesuperconductorsamplesofBi1.7Pb0.3Sr2Ca2Cu3Oy[BSCCO(Bi2223)]system.
Layeredhigh-temperaturesuperconductorsarecharacterizedbyastronganisotropyoftheirsuperconductiveproperties.Fromthispointofviewthelayeredhigh-temperaturesuperconductorsofBCCOsystemareparticularlydistinguished.Theyarecharacterizedbyahighdegreeofanisotropy[3–5]withanisotropyparameterΓ=M/m≫1,(whereMistheeffectivemassalongc-axis,andmistheeffectivemassintheab-plane)andamountstoΓ≈103.
WhenouterfieldHisdirectedalongc-axis,Hc,thenbelowadefinitefieldB=B2Dthevortexsystembehavesasthree-dimensionalone,andaboveB>B2ditbehaveslikequasi-two-dimensionalsystem.
The3D-2DtransitionfieldB=B2Dcanbeevaluatedbyexpression[3]:
B2D≈
Φ0
conductorbehaviortothequasi-two-dimensionalonetakesplacewhen
ξ⊥=d,
whereξ⊥isthecoherencelengthperpendiculartotheab-plane,thatisthecoherencelengthalongc-axis
ξ⊥=ξc,
anddisthedistancebetweenlayers(d=c/2).Fromthisconditionwecoulddefinetheso-calledcrossovertemperature-Tcr[5]whichprovestobeequal:
Tcr=1−
22ξc(0)
initsturn,wassuspendedonthethinelasticthread3.Intheupperpartoftherod,lightorganicglassdisk5ofdiameterR=1cmandmassm=0.4gwasfixed.
ThemomentofinertiaofthesuspendsystemwasI=0.5g·cm2.Therecordingofvibra-tionswasmadeusingmirror6gluedtothesuspendsystem,andphotoresistivetransducers,mountedonscale7.Thescalewithtransducerswasseparatedfrommirror6atadistanceofl=200cmandthemaximalvibrationamplitudeinourexperimentsdidn’texceedϕ≈3·10−1rad.
Thelogarithmicdampingdecrementδofthevibrationsofasuspendedsystemwasmea-suredbyrecordingthetimeofflightofalightspot,reflectedfromthevibratingmirror,betweentwotransducers[7].Thepartofcryostat,whereasuperconductivesamplewasplaced,wasfilledwithliquidheliumorliquidnitrogen,andplacedina8kOemagneticfieldperpendiculartothesuperconductivecylindricalsampleaxis.Electromagnet8wassup-portedbyasystemofbearingsandcouldrotatearounditsaxis.Thesystemofcoils9,10,11canprovidebothlongitudinalandtransversefieldsinrespecttosample’saxis.Inthecaseofnecessitythesecoilsalsocouldbeusefulforapplicationtothesampleofadditionalpulsedandoscillatingmagneticfields.Thesamplewasgluedtothecrystalholderinsuchawaythatitsc-axiswasdirectedalongthemagneticfieldHperpendiculartothevibrationsystemaxis.Byrotatingofelectromagnet8onecouldsetthedirectionofmagneticfieldalongc-axisusingthediamagneticmomentofforcesactingonthec-orientedsample[8].Ifnecessary,wecouldalsomeasuretheanisotropyofelastic-viscouspropertiesofvortexsystem.
Thesmallaxialvibrationsofsampleweremeasuredduringwhichitsc-axisexperiencedsmalldeviationswithrespecttothemagneticfield.Themaximalamplitudeofvibrationswasnotmorethanϕmax≈3·10−1rad.ThedependenceoflogarithmicdampingdecrementofthevibrationsontheoutermagneticfieldtensionHdirectedalongc-axisofstronglyanisotropiclayeredhigh-temperaturesuperconductorsystemBi1.7Pb0.3Sr2Ca2Cu3Oywasinvestigated.
InFig.2thedependenceofdontheoutermagneticfieldtensionHispresented.Asit
4
isseenfromthefigure,intheweakfieldsuptoapproximatelyH=140Oethedampingδwithanincreaseofthemagneticfieldtensionincreases,butthenbeginningfrom175Oeitsharplydecreasesandalreadyatmagneticfieldsoftheorderof1250Oeitbecomesequaltothedampingvalueattheabsenceofamagneticfield.
Furtheraslowreductionfollows,andatfieldH=1750Oeandhigheritturnsouttobeslightlylessthanattheabsenceofmagneticfield.
Asharpreductionofdampingprocessesatfields>175Oe,toouropinion,isrelatedwiththe3D-2Dphasetransitioninthevortexsystem,whenvolume3Dvortexestransforminquasi-two-dimensional2Dvortexesandtheincreaseofcriticalcurrentconnectedwiththistransitionand,correspondingly,ofthepinningforce,stronglyreducesthedissipationprocesses,connectedwiththemotionofvortexsystem.The175-1750Oeintervalisatransitionrange.Thepossibilityof3D-2Dtransitionwasdiscussedintheveryinterestingwork[9]inconnectionwiththetransformationofV-IcharacteristicsofTl2Ba2Ca2Cu3O10−δinthemagneticfieldrange1500-1600Oe.Theestimationof3D-2DtransitioncriticalfieldvalueB2Daccordingtoformula(1)andusingthedataof[4,11]:Γ=3·103,andd=18.5˚A,givesB2D≈2000Oebeinginouropinioninagoodagreementwiththeexperiment.TheestimationofthecrossovertemperatureTcrbyformula(2)usingtheresultsofworksAresultsinTcr=105.7K.A,andd=18.5˚[4,11,12]:Tc=107K,ξc(0)=1.4˚
BeginningfromT=90KuptoT=105Ktheδ(H)dependencecharacterpresentedinFig.2isnotchanged.ButatT=106Ktheδ(H)valueissharplyreducedandbasicallychangedthatpointstothecorrectnessofourestimationofTcr.
Inouropinion,thetransitionrangepresentedintheincreasedscaleintheinsertiontoFig.2deservesanattention.
AsitisseeninFig.2attheweakfieldsH<1kOetheδ(H)dependenceshowsthepresenceofpeakswhichcanbeconnectedwithphasetransitionsinthevortexsystem,forexample,thetransitionofAbrikosovvortex[10]intoglassystateoritsmelting.Theestimationofvortexlatticemeltingfield[13]gives:
5
Bm(T)≈βm
whereβm≈5,CL≈0.2
4CL
Tc
2
(3)
Gi=
Tc
2ε0(0)dΦ0
(4)
ε0(0)=
22πξab(0)
(6)
whereξab(0)indifferentexperimentsfallsintherange15÷17˚A.
Oneobtains:Hc2(0)=(114÷146,5)T.Hence,usingformulas(3),(4)and(5)oneobtains:Bm(T)≈275÷315OeatT=100K.
ThisvalueisinagoodagreementwiththesecondmaximumoflogarithmicdampingdecrementofvibrationsintheinsertionofFig.2whichisseenatH≈280Oe.
So,thedampingpeakobservedbyusinthetransitionrangeofmagneticfieldscanberelatedwiththeAbrikosovvortexmelting,i.e.withthemeltingof3Dvortexes[13].Itshouldbepointedthatthe3D-2Dtransitionatincreasingmagneticfield,predictedbyM.Fisherandcollaborators[15]inthestronglyanisotropiclayeredmaterials,canberealizedalsoinsuperconductorswithnotsoextremelyhighvalueofanisotropyfactor,asinBSCCO,butwithitscomparativelylowvalue.
Asanillustrationonecanconsidertheinterestingwork[16]oninvestigationofthe3D-2DtransitioninthefinelayersofYBa2Cu3O7−δ.
Inconclusion,itshouldbepointedthatthesharpdecayofdissipationatfieldsB>175OeobservedbyusisprobablyconnectedwithasharpincreaseofpinningforcebecausetheamplitudeeffectsofdissipativeprocessessharplydecreaseatstrongfieldsB>2000Oe.Thus,thisphenomenon,initsturn,pointsagaintothepossiblephasetransitioninthe3D-2DvortexstructureinfieldsB>2000Oe.
6
Wehavestartedexperimentsonthedirectmeasurementofpinningforceatthe3D-2Dphasetransition.
And,finally,authorsareexpressingtheirsinceregratitudetoM.J.Chubabriaforprepar-ingthesamples,andtoN.G.SuramlishviliandYu.G.Mamaladzeforthediscussionofexperimentalresults.
ThisworkismadewithsupportofInternationalScientificandTechnologyCenter(ISTC)throughGrantG-389.
7
REFERENCES
[1]J.G.Chigvinadze,Zh.Eksp.Teor.Fiz.65,1923(1973).
[2]C.J.Olson,G.T.Zimanyi,A.B.KoltonandN.Gronbech-Jensen,Phys.Rev.Lett.85,5416(2000);C.J.Olson,C.Reichbardt,R.T.ScalettarandG.T.Zimanyi,arXiv:cond-mat/0008350v.123Aug2000,1-4.
[3]M.V.Feigelman,V.B.GeshkenbeinandA.I.Larkin,PhysicaC167,177(1990);[4]V.M.Vinokur,P.H.KesandA.E.KoshelevPhysicaC168,29(1990).
[5]D.E.Farrell,S.Bonham,J.Foster,Y.C.Chang,P.Z.Jiang,K.G.Vandervoort,D.L.LamandV.G.Kogan,Phys.Rev.Lett.63,782(1989).
[6]E.L.Andronikashvili,S.M.Ashimov,J.S.Tsakadze,J.G.Chigvinadze,Zh.Eksp.Teor.Fiz.55,775(1968).
[7]E.L.Andronikashvili,Yu.G.Mamaladze,J.S.Tsakadze,TrudiInst.Fiz.ANGSSR,7(1959);J.G.Chigvinadze,A.G.Djagarov,V.S.Nadareishvili,T.A.Japiashvili,Prib.Tekh.Eksp.192(1984).
[8]S.M.Ashimov,J.G.Chigvinadze.Prib.Tekh.Eksp.2001(inpress).
[9]W.J.Yeh,L.K.Yu,Z.Q.Yu,Y.XinandW.K.Wong,PhysicaB,194-196,1485(1994).
[10]A.A.Abrikosov,Zh.Eksp.Teor.Fiz.32,1442(1957).
[11]Sang-GeunLee,Young-cheolKim,Chong-YouPark,Seong-choYuandMin-SuJang
PhysicaB,169,657(1991).
[12]W.Langa,W.Kula,R.Sobolevski,PhysicaB,194-196,1643(1994).
[13]G.Blatter,M.V.Feigelman,V.B.Geshkenbein,A.I.LarkinandV.M.Vinokur,
TeoretishePhysek,EidgenossisheTechnisheHochschuleZurich-HongerbergCH=8093
8
(Zurich,Switzerland).
[14]V.V.Shmidt,IntroductiontoSuperconductorPhysics,(Nauka,Moscow,1982)p.133.[15]M.P.A.Fisheretal.,PhysicaB169,85(1991).
[16]P.J.M.Woltgens,C.Dekker,R.H.Koch,B.W.HusslyandA.Gupta,PhysicaB
194-196,1911(1994).
9
FIGURES
FIG.1.
Thediagramoflow-temperaturepartofinstrument:1-sample,2-crystalholder,
3-thread,4-glassrod,5-discus,6-mirror,7-scalewithphotoresistivetransducers,8-electromagnet,9-11-coils.
FIG.2.LogarithmicdampingdecrementδofthevibrationsofasuspendedsystemasafunctionoftheexternalmagneticfieldH.
10
Fig.1
0.250.20
0.250.20δ
0.150.100.050.00
0δ0.15H/2c10.100.050.000200400600800 H (Oe)10002000300040005000
H (Oe)
Fig.2
因篇幅问题不能全部显示,请点此查看更多更全内容