2012—2013学年度第一学期检测试题
高 三 数 学
2012.11
全卷分两部分:第一部分为所有考生必做部分(满分160分,考试时间120分钟),第二部分为选修物理考生的加试部分(满分40分,考试时间30分钟). 注意事项:
1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.第一部分试题答案均写在答题卷相应位置,答在其它地方无效.
3.选修物理的考生在第一部分考试结束后,将答卷交回,再参加加试部分的考试.
第 一 部 分
一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置
上)
1.已知复数z满足z1i2,其中i为虚数单位,则z ▲ .
2.已知点A(1,5)和向量a(2,3),若AB3a,则点B的坐标为 ▲ .
3.已知等比数列{an}满足a1a73a3a4,则数列{an}的公比q= ▲ . 4.已知cos53,且(2,0),则sin()= ▲ .
5.已知两个平面a,b,直线l^a,直线mÌb,有下面四个命题:
①//lm; ② l//m; ③ lm//;④l//m。 其中正确的命题是 ▲ .
2xy46.设x,y满足xy1,则zxy的最小值是 ▲ .
x2y27.已知函数f(x)cosx2sinx2,则f() ▲ .
82x2cos1221x4x52sinxcosx8.已知命题p:|5x2|3,命题q:0,则p是q的 ▲ 条件.( 在“充
分不必要”、“必要不充分”、“既不充分又不必要”、“充要”选择并进行填空)
9.△ABC中,|AB|3,|AC|4,ABBC9,则|BC| ▲ .
10.已知关于x的不等式axb0的解集是(1,),则关于x的不等式
是 ▲ .
axbx20的解集
数学参考答案第1页(共12页)
11.已知等比数列{an}的首项是1,公比为2,等差数列{bn}的首项是1,公差为1,把{bn}
中的各项按照如下规则依次插入到{an}的每相邻两项之间,构成新数列{cn}:
a1,b1,a2,b2,b3,a3,b4, b5,b6,a4,……,即在an和an1两项之间依次插入{bn}中n个
项,则c2013 ▲ .
12.若ABC内接于以O为圆心,以1为半径的圆,且3OA4OB5OC0,则该ABC的面积为 ▲ .
13.已知等差数列{an}的首项为1,公差为2,若a1a2a2a3a3a4a2na2n1tn对nN恒成立,则实数t的取值范围是 ▲ .
2a4a 5*14.设x,y是正实数,且xy1,则
x2x2y2y1的最小值是 ▲ .
二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步
骤) 15.(本小题满分14分)
已知A{x|23xx61},B{x|x2x1m220,m0},
(1)若m2,求AB;
(2)若ABB,求实数m的取值范围. 16.(本小题满分14分)
ABC中,AC3,三个内角A,B,C成等差数列.
(1)若cosC,求AB;
3(2)求BABC的最大值. 17.(本小题满分15分)
如图,四边形ABCD为正方形,在四边形ADPQ中,PD//QA.又QA⊥平面ABCD,
2(1)证明:PQ⊥平面DCQ; QAAB1PD.
6(2)CP上是否存在一点R,使QR//平面ABCD,若存在,请求出R的位置,若不存在,
请说明理由.
数学参考答案第2页(共12页)
18.(本小题满分15分)
某啤酒厂为适应市场需要,2011年起引进葡萄酒生产线,同时生产啤酒和葡萄酒,2011年啤酒生产量为16000吨,葡萄酒生产量1000吨。该厂计划从2012年起每年啤酒的生产量比上一年减少50%,葡萄酒生产量比上一年增加100%,试问: (1)哪一年啤酒与葡萄酒的年生产量之和最低?
(2)从2011年起(包括2011年),经过多少年葡萄酒的生产总量不低于该厂啤酒与葡萄酒
生产总量之和的
23?(生产总量是指各年年产量之和)
19.(本小题满分16分)
已知函数f(x)(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数yf(x)(x1)图象上的任意一点,求|AP|
的最小值,并求此时点P的坐标; (3)当x[1,2]时,不等式f(x) 20.(本小题满分16分)
*设数列{an},对任意nN都有(knb)(a1an)p2(a1a2an),(其中k、
axxb,且f(1)1,f(2)4.
2m(x1)|xm|恒成立,求实数a的取值范围.
b、p是常数)。
(1)当k0,b3,p4时,求a1a2a3an;
(2)当k1,b0,p0时,若a33,a915,求数列{an}的通项公式; (3)若数列an中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
当k1,b0,p0时,设Sn是数列an的前n项和,a2a12,试问:是否存在这样的“封闭数列”
1121S11S21S31nan,使得对任意
nN,都有Sn0,且
*S11.若存在,求数列an的首项a1的所有取值;若18不存在,说明理由.
数学参考答案第3页(共12页)
2012—2013学年度第一学期检测试题
高 三 数 学
2012.11
第二部分(加试部分)
(总分40分,加试时间30分钟)
注意事项:
答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答题卷上规定的位置.解答过程应写在答题卷的相应位置,在其它地方答题无效. 21.(本题满分10分)
已知圆的极坐标方程为:22cos(),将此方程化为直角坐标方程,并求圆
4心的极坐标. 22.(本题满分10分)
如图所示,ABCDA1B1C1D1是长方体,已知AB3,AD4,AA12,M是棱
A1D1的中点,求直线AM与平面BB1D1D所成角的余弦
值.
23.(本题满分10分)
袋中有4个红球,3个黑球,从袋中随机地抽取4个球,设取到一个红球得2分,取到一个黑球得1分.
(1)求得分X不大于6的概率; (2)求得分X的数学期望. 24.(本题满分10分)
设函数f(x)xsinx,数列{an}满足an1f(an). (1)若a12,试比较a2与a3的大小;
*(2)若0a11,求证:0an1对任意nN恒成立.
数学参考答案第4页(共12页)
扬州市2012—2013学年度第一学期期中调研测试试题
高三数学参考答案
1.1i
2.(5,4) 6.2
3.3 7.
2
4.2365
5.①、④ 9.5
13.(,12]
8.充分不必要
10.(1,2) 11.1951 12.
解:a1a2a2a3a3a4a4a5a2na2n1
a2(a1a3)a4(a3a5)a2n(a2n1a2n1) 4(a2a4a2n)4a2a2n24nn8n4n,
2所以8n24ntn2,所以t8t12, 14对nN*恒成立,
14.
解:设x2s,y1t,则st4,
所以
x2x24y2y1=
(s2)s2(t1)t2(s441)(t2) st(st)(141)6()2。 stst14114ts9()(st)(5) 4st4st4因为所以
4s1tx2x2y2y123xx614。
15.解:(1)由······································· 3分 1解得2x6,A{x|2x6}·
由m=2知x2-2x+1-m2≤0化为(x-3)(x+1)≤0,解得1x3,
····························································································· 6分 B{x|1x3} ·
······················································································· 7分 AB{x|2x3} ·(2)∵A∪B= B,AB, ·············································································· 8分 22
又∵m>0 ,∴不等式x-2x+1-m≤0的解集为1-m≤x≤1+m, ·························· 11分 ∴1m2m1,∴m≥5,∴实数m的取值范围是[5,+∞)··················14分 1m6m5数学参考答案第5页(共12页)
16.解:(1)∵ A,B,C成等差数列,∴ 2BAC,
又ABC,∴ B又cosC633, ········································································ 2分
33,∴ sinCABsinCBCsinA, ···································································· 4分
由正弦定理得:所以ABBCsinA,
33sinC33························································· 7分 2; ·
2(2)设角A,B,C的对边为a,b,c,由余弦定理得:
bac2accosB,
222即32a2c2ac,·························································································· 9分 又a2c22ac,当且仅当ac时取到等号,
所以9a2c2acac ·················································································· 11分
19所以BABCac,
229所以BABC的最大值是. ·············································································14分
217.解:
(1)法一:QA⊥平面ABCD,QA⊥CD,
由四边形ABCD为正方形知DC⊥AD,
又QA 、AD为平面PDAQ内两条相交直线,
···································································· 3分 CD⊥平面PDAQ,CD⊥PQ, ·
在直角梯形PDAQ中可得DQ=PQ=
22PD,
则PQ⊥QD, ···································································································· 6分
又CD 、QD为平面ADCB内两条相交直线,
····························································································· 7分 PQ⊥平面DCQ. ·
法二:QA⊥平面ABCD,QA平面PDAQ,
平面PDAQ⊥平面ABCD,交线为AD.
又四边形ABCD为正方形,DC⊥AD,DC⊥平面PDAQ,可得PQ⊥DC. ···························································································································· 3分
在直角梯形PDAQ中可得DQ=PQ=
22PD,则PQ⊥QD, ··································· 6分
又CD 、QD为平面ADCB内两条相交直线, PQ⊥平面DCQ. ······················ 7分 (2)存在CP中点R,使QR∥平面ABCD ································································· 8分
数学参考答案第6页(共12页)
证:取CD中点T,连接QR,RT,AT,则RT∥DP,且RT=又AQ∥DP,且AQ=
1212DP,
DP,从而AQ∥RT,且AQ=RT,
T∥QR, ················································· 11分 四边形AQRT为平行四边形,所以A
T平面ABCD, QR平面ABCD,A····························································································15分 QR∥平面ABCD ·
18.解:设从2011年起,该车第n年啤酒和葡萄酒年生产量分别为an吨和bn吨,经过n年后啤酒和葡萄酒各年生产量的总量分别为An吨和Bn吨。
(1)设第n年啤酒和葡萄酒生产的年生产量为Dn吨,依题意,
an16000(1n1320005=0%n),
2n1bn1000(1100%)=5002n,(nN*),················································· 4分 +5002n=500(642n则Dnanbn=当且仅当
642nn320002n2)5002n642n28000,
n2,即n3时取等号,
故2013年啤酒和葡萄酒生产的年生产量最低,为8000吨。 ································ 7分
Bn2,得Bn2An, (2)依题意,
AnBn31n16000[1()]nn1000[12]21n2∵An,Bn1000(21), 32000n112212∴1000(21)32000nnn212n6n2,
∵210,∴2642,∴n6,
从第6年起,葡萄酒各年生产的总量不低于啤酒各年生产总量与葡萄酒各年生产总量之和的
23。 ··················································································································15分
19. 解:(1)由 解得:f(1)1f(2)4,得ab12ab2,
a2b1. ···························································································· 3分
2xx12(2)由(1)f(x)2,
22所以|AP|(x1)y(x1)4(令x1t,t0,
则|AP|(t2)4(1)tt(t2t)4(t222xx1),
21224t24(t2t)8
2t)4(t2t2)
2数学参考答案第7页(共12页)
因为x1,所以t0, 所以,当t2t22,
所以|AP|2(222)2, ················································································ 8分 即AP的最小值是222,此时t2,x21 点P的坐标是(21,2(3)问题即为
也就是x2xx1m|xm|2m(x1)|xm|······································································ 9分 2)。·
对x[1,2]恒成立,
对x[1,2]恒成立,······························································10分
要使问题有意义,0m1或m2.
法一:在0m1或m2下,问题化为|xm|即mmxx2mx对x[1,2]恒成立,
mx12m对x[1,2]恒成立,
mxmxmxm对x[1,2]恒成立,
①当x1时,m1或m2,
②当x1时,m对于mx2x2x1且mx2x1对x(1,2]恒成立,
x2x1x1令tx1,x(1,2],则xt1,t(2,3], x2对x(1,2]恒成立,等价于m()max,
x1(x2(t1)t2t431t2,t(2,3]递增,
43x1)maxx2,m,结合0m1或m2,m2
x2对于mx1x1令tx1,x(1,2],则xt1,t(0,1], x2对x(1,2]恒成立,等价于m()min
x1(x2(t1)t2t1t2,t(0,1]递减,
x1综上:2m4 ································································································16分
2x2m法二:问题即为对x[1,2]恒成立, x1(x1)|xm|)min4,m4,0m1或2m4,
也就是xm|xm|对x[1,2]恒成立,······························································10分
要使问题有意义,0m1或m2.
故问题转化为x|xm|m对x[1,2]恒成立, 令g(x)x|xm|
数学参考答案第8页(共12页)
①若0m1时,由于x[1,2],故g(x)x(xm)x2mx,
g(x)在x[1,2]时单调递增,依题意g(2)m,m43,舍去; m2)2②若m2,由于x[1,2],故g(x)x(mx)(x考虑到
m21,再分两种情形: m22,即2m4,g(x)的最大值是g(m24,
(ⅰ)1依题意(ⅱ)
m2m2)m42,
2,即m4,g(x)在x[1,2]时单调递增, 2故g(2)m,2(m2)m,m4,舍去。
4mm,即m4,2m4;
综上可得,2m4 ·························································································16分 20. 解:(1)当k0,b3,p4时,
3(a1an)42(a1a2an), ①
用n1去代n得,3(a1an1)42(a1a2anan1), ②
②-①得,3(an1an)2an1,an13an, ····················································· 2分 在①中令n1得,a11,则an0,∴
an1an3,
∴数列{an}是以首项为1,公比为3的等比数列,
。 ······································································· 4分
2(2)当k1,b0,p0时,n(a1an)2(a1a2an), ③ 用n1去代n得,(n1)(a1an1)2(a1a2anan1), ④
④-③得, (n1)an1nana10, ⑤ ··········································· 6分 用n1去代n得,nan2(n1)an1a10, ⑥
⑥-⑤得,nan22nan1nan0,即an2an1an1an, ······················· 8分 ∴数列{an}是等差数列。
93(3)由(2)知数列{an}是等差数列,∵a2a12,∴ana12(n1)。
a9a3∴a1a2a3an=
31n∵a33,a915,∴公差d2,∴an2n3。 ························10分
又an是“封闭数列”,得:对任意m,nN,必存在pN使
a12(n1)a12(m1)a12(p1),
得a12(pmn1),故a1是偶数, ····························································12分 又由已知,一方面,当
11218111S11118,故
1811a112。
a112时,
数学参考答案第9页(共12页)
*Snn(na11)0,对任意nN,都有
1S11S21S31Sn1S1112。
另一方面,
当a12时,Snn(n1),则
1S11S21S31S11Sn1S21Sn1n1131Sn1(1n1n1,
11,
1118取n2,则
23,不合题意。·········································14分
当a14时,Snn(n3),
1S11S21S31Sn1118111(),则 3nn311n21Sn1n3)11183n1,
当a16时,Snn(na11)n(n3),
1S11S21S31Sn11181(11111(), 3nn31)11183n1n2n3,
又
1811a112,∴a14或a16或a18或a110。 ·································16分
数学参考答案第10页(共12页)
第二部分(加试部分)
(总分40分,加试时间30分钟)
21. 解:由22cos(4··································· 3分 )得, 2cos2sin, ·
222········································ 6分 2cos2sin,即xy2x2y0, ·
圆心直角坐标是(1,1),极坐标为(2,4·················································10分 )。 ·
22.解:以D为坐标原点,DA,DC,DD1为坐标轴,建立Oxyz坐标系,
则AM(2,0,2),DD1(0,0,2),DB(4,3,0),
设平面BDD1B1的一个法向量为n(x,y,z) 由nDD12z0可得n的一个值是n(3,4,0), nDB4x3y0设直线AM与平面BB1D1D所成的角是,则
|AMn|32, ······················································ 8分 sin|cos〈AM,n〉|10|AM||n|故直线AM与平面BB1D1D所成角的余弦是
23. 解:(1)P(X5)C4C3C74133210。 ···········································10分
22435,P(X6)22352C4C3C741835,
P(X6)P(X5)P(X6)······························································ 4分
(2)得分X的所有可能值为:5,6,7,8
P(X5)C4C3C7341134351235,P(X6),P(X8)C4C3C74421835135, ,
P(X7)C4C3C74C4C3C740得分X的分布列为
5 X P EX56 7123587 4478 135435435618351351235 1835。 ···················································10分
24. 解:(1)a12时,a2f(2)2sin2(0,2),
所以sina20,
所以a3a2sina20,
所以a2a3。 ····································································································· 4分
*(2)用数学归纳证明当0a11时,0an1对任意nN恒成立,
①n1时,结论成立; ②设nk时,0ak1,
数学参考答案第11页(共12页)
则当nk1时,
························································ 6分 ak1aksinak0,即ak1ak1, ·
当x(0,1)时,f'(x)1cosx0,
即f(x)是(0,1)上的单调递增增函数, 所以ak1f(ak)f(0)0,即0ak11 即nk1时,结论成立,
综上可得,当0a11时,0an1对任意nN*恒成立, ···························10分
数学参考答案第12页(共12页)
因篇幅问题不能全部显示,请点此查看更多更全内容