您的当前位置:首页不锈钢管道焊接工艺

不锈钢管道焊接工艺

2023-03-21 来源:爱问旅游网


摘 要:本文介绍了不锈钢管道TIG+MAG焊接工艺,与全氩焊和氩电联焊相比,TIG+MAG焊的生产效率大大提高,焊接质量有所提高。该项技术已在电厂管道焊接中得到应用。

1 案例分析

0Cr18Ni9不锈钢φ530mm×11mm 大管水平固定全位置对接接头主要用于电厂润滑油管道中,焊接难度较高, 对焊接接头质量要求较高,内表面要求成形良好,凸起适中,焊后要求PT、RT检验。以往均采用TIG焊或手工电弧焊,前者效率低、成本高,后者质量难以保证且效率低。为既保证质量又提高效率,采用TIG内、外填丝法焊底层,MAG焊填充及盖面层,使质量、效率都得到保证。

0Cr18Ni9不锈钢热膨胀率、导电率均与碳钢及低合金钢差别较大,且熔池流动性差,成形较差,特别在全位置焊接时更突出。在MAG焊过程中, 焊丝伸出长度必须小于10mm,焊枪摆动幅度、频率、速度及边缘停留时间配合适当,动作协调一致,随时调整焊枪角度,使焊缝表面边缘熔合整齐, 成形美观,以保证填充及盖面层质量。

2 焊接方法及焊前准备

2.1 焊接方法

材质为0Cr18Ni9,管件规格为φ530mm×11 mm,采用手工钨极氩弧焊打底,混合气体(CO2+Ar)保护焊填充及盖面焊,立向上的水平固定全位置焊接。

2.2 焊前准备

2.2.1 清理油、锈等污物,将坡口面及周围10mm内修磨出金属光泽。

2.2.2 检查水、电、气路是否畅通,设备及附件应状态良好。

2.2.3 按尺寸进行装配,定位焊采用肋板固定(2点、7点、11点为定位块固定),也可采用坡口内点固,但必须注意定位焊质量。

2.2.4 管内充氩气保护。

3 TIG焊工艺

3.1 焊接参数

采用φ2.5 mm的Wce-20钨极,钨极伸出长度4~6mm,不预热,喷嘴直径12mm,其它参数见表1。

3.2 操作方法

3.2.1 管子对接水平固定焊缝是全位置焊接。因此焊接难度较大,为防止仰焊内部焊缝内凹,打底层采用仰焊部位(六点两侧各60°)内填丝,立、平焊部位外填丝法进行施焊。

3.2.2 引弧前应先在管内充氩气将管内空气置换干净后再进行焊接,焊接过程中焊丝不能与钨极接触或直接深入电弧的弧柱区,否则造成焊缝夹钨和破坏电弧稳定,焊丝端部不得抽离保护区,以避免氧化,影响质量。

3.2.3 由过6点5mm处起焊,无论什么位置的焊接,钨极都要垂直于管子的轴心,这样能更好地控制熔池的大小,而且可使喷嘴均匀地保护熔池不被氧化。

3.2.4 焊接时钨极端部离焊件距离2mm 左右,焊丝要顺着坡口沿着管子的切点送到熔池的前端,利用熔池的高温将焊丝熔化。电弧引燃后,在坡口一端预热,待金属熔化后立即送第一滴焊丝熔化金属,然后电弧摆到坡口另一端,给送第二滴焊丝熔化金属,使二滴铁水连接形成焊缝的根基,然后电弧作横向摆动,两边稍作停留,焊丝均匀地、断续地送进熔池向前施焊。

3.2.5 在填丝过程中勿扰乱氩气气流, 停弧时注意氩气保护熔池,防止焊缝氧化。焊后半圈时,电弧熔化前半圈仰焊部位,待出现熔孔时给送焊丝,前两滴可以多给点焊丝,避免接头内凹,然后按正常焊接。

3.2.6 12点收尾处打磨成斜坡状,焊至斜坡时,暂停给丝,用电弧把斜坡处熔化成熔孔,最后收口。注意焊到后半圈剩一小半时应减小内部保护气体流量到3L/min,以防止气压过大而使焊缝内凹。

3.3 常见缺陷产生的原因及预防措施

3.3.1 未焊透:焊接电流小、根部间隙小、焊接速度过快、焊枪角度不正常等均易产生未焊透的缺陷。根部间隙一定不能小于3.5mm,合适的焊接电流和正确调整焊枪角度就可避免产生未焊透现象。

3.3.2 氧化严重:打底焊时,管内充压装置未能起到良好的保护作用,焊缝背面会氧化;焊接过程中对熔池及焊丝端头保护不良,或焊丝表面有氧化杂质也会氧化严重。充氧装置尽可能与管子对严,不能留有间隙,管子的间隙用耐高温锡油纸贴上,避免焊缝氧化。

3.3.3 夹渣、夹钨:焊接过程中,若焊丝端头在高温过程中脱离了氩气保护区,在空气中被氧化,当再次焊接时被氧化的焊丝端头未清理,又送入熔池中,在断口试验中判为夹渣;若钨极长度伸出量过大,焊枪动作不稳定,钨极与焊丝或钨极与熔池相碰后, 又未终止焊接,从而造成夹钨。因管子是圆的,焊枪、送丝角度要随时变化,所以手法一定要稳、准,才能避免夹渣、夹钨的现象。

3.3.4 内凹:装配间隙小,焊接过程中焊枪摆动幅度大,致使电弧热量不能集中于根部,产生了背面焊缝低于试件表面的内凹现象。电弧热量尽量集中于根部,仰焊部位多给点焊丝可避免内凹。

4 MAG焊工艺

4.1 焊接参数

喷嘴直径20mm,喷嘴至试件距离6~8mm,层间温度≤150℃。焊缝厚度11mm,其它工艺参数见表2。

采用混合比(体积)为Ar80%+CO2 20%的保护气体,既能使Ar弧电弧稳定、飞溅小、容易获得轴向喷射过渡的优点,电弧又具有一定氧化性,克服了全部氩气焊接时表面张力大、液体金属粘稠、阴极斑点易飘移等问题, 同时对焊缝蘑菇形熔深有所改善。

4.2 操作方法

4.2.1 焊前注意喷嘴、导电嘴是否清理干净,气体流量的大小是否合适,清理打底层表面,控制层间温度。

4.2.2 因填充、盖面层用气体保护焊, 焊丝伸出长度的长短对焊接过程的稳定性影响较大,焊丝伸出长度过长,焊丝电阻值增大,焊丝过热而成段熔化,结果焊接过程不稳定,金属飞溅严重,焊缝成形不良,对熔池的保护不好;焊丝伸出长度过短,则焊接电流增大,喷嘴与工件的距离缩短,焊接视线不清,焊道成形不良,同时若焊丝伸出长度过短,还会使喷嘴过热, 造成飞溅物粘住或堵塞喷嘴,从而影响气体流量。

4.2.3 焊接时,焊枪角度要与管子轴线垂直,因为管子是圆的,所以焊枪角度要随时变化,这样才能保证焊缝质量,避免焊缝产生气孔、夹渣等现象。焊接时采用小月牙形摆动,两侧稍作停留稳弧,中间速度稍快,这样可以避免焊出的焊缝凸起、不平整;上、下接头都要越过中心线5~10mm,后半圈填充、盖面仰焊接头时,可把前半圈引弧焊接位置磨一个缓坡,使后半圈接头时不致于产生缺陷;填充时,要注意坡口边缘不要被电弧擦伤, 以备盖面层焊接。盖面时,应在坡口边缘稍作停顿,以保证熔池与坡口更好地熔合,焊接过程中,焊枪的摆动幅度和频率要相适应,以保证盖面层焊缝表面尺寸和边缘熔合整齐。

4.3 常见缺陷产生的原因及预防措施

4.3.1 氧化:MAG线能量较大,层温较高,或焊丝表面有氧化杂质,都会导致氧化。焊前清理干净,控制层温和用较小的线能量都可避免氧化。

4.3.2 夹渣:焊枪角度不正确,或两边停留时间不够,均容易产生夹渣。

5 结束语

5.1 采用TIG焊进行底层焊接,具有电弧稳定、控制性好、质量优等特点。

5.2 采用活性混合气体保护MAG焊进行全位置填充及盖面层焊接,能提高熔滴过渡的稳定性,稳定阴极斑点,增大电弧的热功率。

5.3 采用TIG+MAG焊接工艺获得了良好的接头外观成形和内在质量。

类似工艺已在工程中应用,其效果良好,这一高质量及高效率相结合的工艺值得在不锈钢大管对接中推广使用。

因篇幅问题不能全部显示,请点此查看更多更全内容