arXiv:hep-ph/0309304v1 26 Sep 2003Anewtreatmentofthein-mediumchiralcondensates
G.X.Penga,b,M.Loewec,U.Lombardod,X.J.Wenb
ab
ChinaCenterofAdvancedScienceandTechnology(WorldLaboratory),Beijing100080,ChinaInstituteofHighEnergyPhysics,ChineseAcademyofSciences,Beijing100039,Chinac
FacultaddeFisica,PontificiaUniversidadCat´olicadeChile,Casilla306,Santiago22,Chiled
DipartimentodiFisica,57CorsoItalia,andINFN-LNS,ViaSantaSofia,9500Catania,Italy
Anewformalismtocalculatethein-mediumchiralcondensateispresented.Atlowerdensities,thisapproachleadstoalinearexpression.Ifwedemandacompatibilitywiththefamousmodel-independentresult,thenthepion-nucleonsigmatermshouldbesixtimestheaveragecurrentmassoflightquarks.QCD-likeinteractionsmayslowthedecreasingbehaviorofthecondensatewithincreasingdensities,comparedwiththelinearextrapolation,ifdensitiesarelowerthantwicethenuclearsaturationdensity.Athigherdensities,thecondensatevanishesinevitably.
Thebehaviorofchiralcondensatesinamediumhasbeenaninterestingtopicinnuclearphysics[1].Apopularmethodtocalculatethein-mediumquarkcondensateistheFeynman-Helmannthe-orem.Themaindifficulty,however,istheas-sumptionswehavetomakeonthederivativesofmodelparameterswithrespecttothequarkcur-rentmass.
Tobypassthisdifficulty,wewillapplyasimilarideaasinthestudyofstrangequarkmatter[2–5]bydefininganequivalentmass.Adifferentialequationwhichdeterminestheequivalentmasswillbederived.Atlowerdensities,thenewfor-malismleadstoalineardecreasingcondensate.Acomparisonwiththeresultinnuclearmatterimpliesthatthepion-nucleonsigmatermshouldbesixtimestheaveragecurrentmassoflightquarks.Athigherdensities,itturnsoutthatthedecreasingspeedofthecondensatewithincreas-ingdensitiesislowered,comparedwiththelinearextrapolation.
TheQCDHamiltoniandensitycanbeschemat-icallywrittenas
HQCD=Hk+mi0q¯iqi+HI,(1)
i
Thebasicideaofthemass-density-dependent
modelofquarkmatteristhatthesystemenergycanbeexpressedasinanoninteractingsystem,wherethestronginteractionimpliesavariationofthequarkmasseswithdensity.Inordernottoconfusewithothermassconcepts,letuscallsuchadensity-dependentmassasanequivalentmass.Itcanbeseparatedintotwoparts,i.e.,mi=mi0+mI,
(2)
wherethefirsttermisthequarkcurrentmassandthesecondpartisaflavorindependentinteract-ingpart.Therefore,wewillhaveaHamiltoniandensityoftheform
miq¯iqi.(3)Heqv=Hk+
i
WerequirethatthetwoHamiltoniandensities
HeqvandHQCDshouldhavethesameexpecta-tionvalueforanystate|Ψ,i.e.,Ψ|Heqv|Ψ=Ψ|HQCD|Ψ.
(4)
Applyingthisequalitytothestate|nBwithbaryonnumberdensitynBandtothevacuumstate|0,wehave
HeqvnB−Heqv0=HQCDnB−HQCD0.(5)HereweuseAnB≡nB|A|nBandA0≡0|A|0foranarbitraryoperatorA.
whereHkisthekineticterm,mi0isthecurrentmassofquarkflavori,andHIistheinteractingpartoftheHamiltonian.Thesumgoesoverallflavorsinvolved.
2
Werestrictourselvestosystemswithuni-formlydistributedparticleswherewecanwriteΨ|m(nB)¯qq|Ψ=m(nB)Ψ|q¯q|Ψ.AccordinglywecansolveEq.(5)formI,getting
mǫI=
I
2π2
kf0
mi
,
(8)
whereg=3(colors)×2(spins)=6isthedegener-acyfactor,and
kf=
18
8
[x2
x2π2
kf00
kNnB
mf
i0F
i
f0
2
nB
g
πkf0
3n=
B
mkiFf
i
NF
f
∂λ
H(λ)|Ψ=
∂
Ψ|foreachflavori.Applying∂mi0
thisd3xHQCD|Ψequality,re-spectively,tothestate|nB(quarkmatterwithbaryonnumberdensitynB)andtothevacuum|0,oneobtainsq¯iqinB−q
¯∂ǫ
iqi0=mi
[1+∇mI](17)
with∇≡
i∂/∂mi0.Notethat∇isadifferen-tialoperatorinmassspace.
ComparingthisequationwithEq.(6)wehave∇m)
I=
ǫI/(3nB∇ǫI
Nf
i
f
kf0
∂m=
mF(kf/m)−
m0
−1,(20)
0
mIf(kf/m)
q¯qnB
ǫI
Nfq¯q0
m
−m0
m=
0
ǫI
3N(23)
fn.B
ThismeansmI=ǫI/(3NfnB),i.e.,ǫI/mI=
3NfnB.SubstitutingthisratiointoEq.(21),wegetq¯qnB
n∗
(24)
withn∗≡−
1
6m,
(25)0
wheremπ≈140MeVisthepionmassandfπ≈
93.2MeVisthepiondecayconstant.
Sincewehavesaidnothingabouttheformoftheinteractingenergydensity,ourresultismodel
3
independent.Recallingthatthereisamodel-dependentresultinnuclearmatter,i.e.,q¯qρ
∗
Mπ2Fπ
2
ρ∗
withρ≡
2
N0nBv(m0,r¯).(27)
Theaverageinter-quarkdistancer¯islinkedto
densitythroughr¯=ξ/n1/3
b.Hereξisageomet-ricalfactorrelatedtothewayinwhichwegroupthequarkstogether.Inwhatfollows,wehavedi-videdthesystemintosubcubicboxes,beingthenξ=1/31/3.WewilltakeN0=2sinceaquarkhasatrendtointeractstronglywithothertwoquarkstoformabaryon.TheconcretevalueofN0aswellasthevalueofξhaveonlyamarginalinfluenceonthedensitybehaviorofthechiralcondensate.
SubstitutingEq.(27)intoEqs.(21)and(22),wehave,respectively,q¯qnB
nB
2Nf
m,
(28)
ImF
kf
NFf
kf0
2Nv(mf0,nB).(29)
4
IftheparameterNn1/3
0divergesfasterthankforB
atextremelyhigherdensities,wehave
nlim,r¯)=0.
(30)
B→∞
v(m0whichisconsistentwithasymptoticfreedom.TosolveEq.(20),weneedaninitialconditionatm0=m∗0.Letussupposeittobem(m∗0,nB)=m(nB).(31)
Usually,wewillhavev(m0,nB)|m0=m∗0
=v(¯r),(32)wherev(¯r)istheinter-quarkinteractionforthespecialvaluem∗0ofthequarkcurrentmassm0.Eq.(20)isdifficulttosolveanalytically.How-ever,thiscanbedoneatlowerdensities.Let’srewriteEq.(19)asmI=
N0f
Atlower
v(m0,r¯)
k.(33)
f0
∂m0
densities,theFermimomentumkfissmall,sothefunctionF(x)approachesto1.NAccordingly,fromEq.(29)wegetmI=
0
0
2Nv(¯r)+
1−
1
f
mm∗0
m0
dm0.(34)
Ingeneral,anexplicitanalyticalsolutionfor
thecondensateisnotavailable,andwehavetoperformnumericalcalculations.Foragiveninter-quarkinteractionv(¯r),wecanfirstsolveEq.(29)toobtaintheinitialconditioninEq.(31)fortheequivalentmass,thensolvethedifferentialEq.(20),andfinallycalculatethequarkcondensatethroughEq.(28).
Therearevariousexpressionsforv(¯r)inlitera-ture,e.g.,theCornellpotential[12],theRichard-sonpotential[13],theso-calledQCDpotentials[14,15],etc.Theyareallflavor-independent.Let’stakeaQCD-likeinteractionoftheformv(¯r)=σr¯−
4
r¯
.
(35)
Thefirsttermσr¯isthelong-rangeconfiningpart.Thesecondtermincorporatesperturbativeef-fects.Tosecondorderinperturbationtheory,onehas[14,15]α4π
lnλ(¯r)
s(¯r)=b20
λ(¯r)
(36)
where[16]λ(¯r)≡ln[(¯rΛ
ms,
andb.TheQCDscalepa-rameterisusuallytakentobeΛ
1.00.9 b=100.8 b=20 b=300.7 linearextrapolation0>0.6qq0.5Bn>q0.4q<0.30.20.10.00.00.10.20.30.40.5n-3B (fm)Figure1.Densitydependenceofthequarkcon-densateinquarkmatter.A.WhyshouldtheeffectiveFermimo-mentumbeboostedInthisappendix,weshowthattheeffectiveFermimomentumintheequivalentmassap-proachshouldbeboostedtoahighervalue.Westartfromd(VE)=Td(VS)−PdV+µd(Vn),(38)whichisthecombinationofthefirstandsecondlawsofthermodynamics.Herenistheparticlenumberdensity,Eistheenergydensity,andSistheentropydensity.Becausethesystemisuni-formlydistributed,thecorrespondingextensivequantitiesare,respectively,Vn,VE,andVS.µisthechemicalpotential.FromthisexpressionwecangetT=dEdV=0,(40)S,n5
µ=
dE
f
2π2
k0
16π2
kf
m
,(45)
wheretheFermimomentumkfsatisfieskf≡∂kf
dkf+
∂E
2π2dkf
+
g∗m
3
g∗
n
1/.(47)
Eq.(47)isthewell-knownexpressionforthenon-interactingsystem.However,inthemass-density-dependentcasewhereinteractionsaretreatednon-pertutbativelybydefininganequiv-alentmass,thequarknumberdensityshouldbegivenbyintegratingoverbothsidesofEq.(46):ng∗k3=
f
m2sh−1
(kf/m)
4π2kf−k2f
+m2mdm(48)Usuallytheequivalentmassisabigquantity,
muchlargerthanthecurrentmass.Therefore,
6
theratiokf/missmallifthedensitiesarenottoohigh.LetusthenexpandtheintegrandofthesecondtermontherighthandsideofEq.(48)withrespecttokf/m,takingthenthelowestor-derterm.Weget:
3
kfg∗
n=
6π2
Zkf
.(50)
ComparingEqs.(47)and(51),itisobvious
that,forthesamedensity,theFermimomentumoftheinteractingsystemisdifferentfromthatofthenon-interactingcase.WhentakingZ=3/2,Eq.(51)becomesEq.(9).Acknowledgements
ThesupportfromtheNationalNaturalScienceFoundationofChina(19905011and10135030),FONDECYT,Chile,(Proyectos3010059and1010976),theCASpresidentfoundation(E-26),andtheBES-BEPCfund(G6501)aregratefullyacknowledged.REFERENCES
1.See,e.g.,G.E.BrownandM.Rho,Phys.Rep.
363(2002)85;M.C.Birse,J.Phys.G20(1994)1537.
2.G.X.Pengetal.Phys.Rev.C62(2000)
025801;C61(2000)015201;C59(1999)3452;C56(1997)491.
withCbeingaconstant.Tobeconsistentwiththelinearconfinement,theexponentZisequalto11.However,toreproducethepresentlyacceptedvalueforthepion-nucleonterm(about45MeV),Zshouldbeabout3/2.SubstitutingEq.(50)intoEq.(49)thengives
1/3
6
kf=.(51)
1−Z/3
因篇幅问题不能全部显示,请点此查看更多更全内容