您的当前位置:首页氩弧焊机工作原理

氩弧焊机工作原理

2024-04-07 来源:爱问旅游网
第八章 氩弧焊机工作原理

一、 什么是氩弧焊

氩弧焊即钨极惰性气体保护弧焊,指用工业钨或活性钨作不熔化电极,惰性气体(氩气)作保护的焊接方法,简称TIG。 二、氩弧焊的起弧方式

氩弧焊的起弧采用高压击穿的起弧方式,先在电极针(钨针)与工件间加以高频高压,击穿氩气,使之导电,然后供给持续的电流,保证电弧稳定。

三、氩弧焊的一般要求

(一)对气体的控制要求:要求气体先来后走,氩气是较易被击穿的惰性气体,

先在工件与电极针间充满氩气,有利于起弧;焊接完成后,保持送气,有助于防止工件迅速冷却防止氧化,保证了良好的焊接效果。

(二)电流的手开关控制要求:要求按下手开关时,电流较气延迟,手开关断开

(焊接结束后),根据要求延时供气电流先断。

(三)高压的产生与控制要求:氩弧焊机采用高压起弧的方式,则要求起弧时有

高压,起弧后高压消失。

(四)干扰的防护要求:氩弧焊的起弧高压中伴有高频,其对整机电路产生严重

的干扰,要求电路有很好的防干扰能力。 四、氩弧焊机与手弧焊机的工作电路的差别

氩焊机与手弧焊机在主回路、辅助电源、驱动电路、保护电路等方面都是相似的。但它在后者的基础上增加了几项控制:1、手开关控制;2、高频高压控制;3、增压起弧控制。另外在输出回路上,氩弧焊机采用负极输出方式,输出负极接电极针,而正极接工件。

五、氩弧焊机的工作原理

氩弧焊机在主回路、辅助电源、驱动电路、保护电路等方面的工作原理是与手弧焊机是相同的。在此不再多叙述,而着重介绍氩弧焊机所特有的控制功能及起弧电路功能。

(一) 手开关控制

手开关原理图如图8.1

图8.1

氩弧焊机要求氩气先来后走,而电流则后来先走(相对气而言),这此都是通过手开关控制实现的。

由图知:当焊机主开关合上后,辅助电源工作,给控制电路提供了24V的直流电。手开关未合上时,24V直流电通过电阻R5使Q2导通, CW3525芯片的8脚经过T形滤波器(L5、C5组成,抗干扰用)对地短路,此时,CW3525处于封波状态,电路无输出;手开关合上时,24V直流电通过电阻R4、 R8使Q1导通,Q2基极被拉低而关断,24V直流电通过电阻R6、 R7使Q3导通继电器J3A吸合,使控制气体供给的电磁阀工作,给焊接供气。而8脚电位由于缓起动电阻,电容的作用缓慢增

长,经过一定时间,CW3525开始工作,电路开始输出功率。这样,电流就较气延时供给延时时间由缓起动动阻、容值决定)。

电磁阀为气体供给控制器件,当继电器J3A合上,电磁阀中的电感线圈获得电流,

产生磁能,把铁块吸离气管管口,气体通过电磁阀供给焊接。

手开关控制电路中,电感线圈L1~L4及C1、C2起到防止干扰而使手开关误导通的作

用。

1、手开关合上时,由于Q3导通继电器J3A吸合,电磁阀打开供气。辅助电源向电容C17充电。而由于热敏电阻RT4、RT5的限流,使得手开关不到于因电流过大而损坏;

2、焊接结束,手开关断开后,Q2导通,CW3525 的8脚电位被拉低,电路停止输出,而C17上仍充有电能,它通过R6、R7放电供给Q3导通,保持电磁阀导通延时供气。实现了焊接对电流、气体的控制要求。 (二) 高频、高压电流的产生与控制

(1) 产生:氩弧焊机的起弧需要高压,为了能在手弧焊机的基础上产生高压并送到输出回路,采用了如图8.2的电路。

图8.2

(2) 工作原理:

1) 升压变压器;图中变压器为24:70,将307电压升高约3倍。

2) 采用4倍压整流电路;如图(C11~C14、D11~D14)来产生高压:①当升压变压器(T1)初级流过一正脉冲电流时(电压值为U),N2产生一上正下负(正向)的感应电动势,并给电容C14充电,使电容C14的端电压也为U,(方向如图);且由于线圈续流和D14的作用,在主变中无电流流过时,C14也不能放电;②升压变压器流过一等值的负脉冲电流时,在N2上产生一上负下正的感应电动势(值为U),给C11充电,使得C11上的压降VC11=VC14+U感应 =2V,方向如图;③升压变压器T1再流过一正脉冲电流时,N2上又产生上正下负的感应电动势,这时,电容C13充电,端电压VC13=VC11+U感应-VC14=2V,方向如图;④升压变压器的电流方向再次改变,使得N2上的感应电动势方向为上负下正,这时,电容C12得到电能,且VC12=VC13+VC14-VC11=2V,方向如图,这样,在A、B间便形成了4U的压降。 (3) 高频振荡发生器:(由L3(N3)、C5、放电嘴组成)

①A、B两点的压降达到4V(V为逆变器输出电压,约1KV),给电容C15充电;

②放电嘴因高压击穿放电,此时,相当于短路L3、C15; ③L3、C15产生高频振荡,f=L/2π√LC ④由于输出能量的不断补充,使得每隔一定时间,L3、C15便产生高频振荡电流,并通过T4次级输出到输出。由于T4上要通过高频高压的电流,其技术参数要求严格,它的质量是起弧难易,焊接效果的决定性因素。 (三) 控制

输出回路中有高频高压电流后,保证了起弧,可如果防护不当,高频高压电流便会反向击穿二次整流中的整流管,甚至损坏主变T1初级线圈所联接的电路,而且,高频高压只是在起弧时使用,起弧后,便不再需要,所以,

需适时断开高频高压发生器,其控制电路如图8.3所示

图8.3

①防干扰控制:在输出端的正负极间接有压敏电阻与电容,其对于高频高压电流来说明相当于短路同时,正负端都接有抗高频的电感线圈,这样,就控制了高频高压电流反窜到二次整流的电路中,只在输出端形成回路。同时,接在正极与机壳间的电阻(压敏)和电容也能有效地防止高频电流及其它干扰。

②高频高压电流的产生与关断控制:高频高压电流的产生与关断都由继电器J控制,手开关全上时,把S2合上,这时,电路工作,输出约56伏的直流电压,它使继电器动作,吸合JA,使高频高压电路工作,产生高频高压电流输出,引起电弧,电弧一引起,输出回路便出现大电流,流经电抗器(电感线圈);由于电感的续流作用,能使电抗器正端(图中A点)电压降到很低的电位(甚至为负值),这时,继电器被可靠地断开,高频高压发生器停止工作,完成了对高频高压电流的控制。 (四) 增压起弧控制

为了保护轻易起弧,提供焊接质量,氩弧焊机还在输出端增设了一个增压起弧的装置,其利用高频高压发生器的变压器的另一组次边作为增压变压器,使得高频高压发生器工作时,也同时抬高了输出端的电压,保证起弧,起弧后,增压装置也随着高频高压电流发生器一起被断开。其原理图如图8.2

逆变式氩弧焊机

高频振荡器电路:TB是高频变压器升压变压器,FD是火花放电器,它是由钨(或钼)等高熔点金

属制成的丝,钨丝后面带散热器,火花放电器的两极间的问隙可以调节。为了使火花放电器间隙达到最佳,该值为1~3mm。如果间隙过大,即使升压变压器最高电压时也击穿不了,振荡器中电容不可能与电感构成振荡电路,无法起振。如果间隙过小,升压变压器二次电压会使FD连续击穿,近乎短路状态,使电容没有得到充电的机会,因此也无法起振。与此同时,变压器TB会因长时间短路而烧毁。当间隙较小时(如小于0.5mm)FD过早地被击穿,电容的充电电压不高,振荡的幅度也会很小,导致引弧效果不理想。TZ是耦合变压器,耦合变压器的铁芯是铁氧体磁环(有O形、双Ⅱ形和双E形),使用时要保证磁环的横截面最小值、一次绕组和二次绕组的匝数。耦合变压器的一次绕组实际上是振荡电感,一般使用普通2~3mm2的多股软塑料线在铁氧体磁环上绕3~5匝即可。耦合变压器的二次绕组为耦合线圈,当振荡器与电弧串联应用时,要使用与焊接电流相适应的电缆线来绕制,需在铁氧体磁环上绕4~12匝,使耦合变压器呈升压状态,有利于加强高频信号,便于引弧。耦合变压器的匝数比可以调整,促使振荡器的起振或达到击穿电弧间隙。高频引弧后的自动切除,由电弧继电器KM。和高频电路控制继电器KMS共同完成。弧焊电源没有电弧时,电源输出的电弧电压较低,这是由电源的下降外特性所决定的。因此,电弧未引燃时,空载电压使电弧继电器KM3吸合,KM3接通了KMsS,KMS又接通了高频电路,使火花放电器FD产生了高频火花,在有电源电压和氩气供应的条件下便可引燃电弧。电弧引燃之后电弧电压降低,从而使电弧继电器KMS达不到继电器吸合的动作电压而释放,继电器KMS也释放,切断了高频电路,完成了高频引弧后的自动切除过程。串联在电弧继电器KMS电路里的电位器RP。,是用来调整加在继电器KlM3线圈两端电压,使在长、短弧焊时均能自动切除高频火花。

(3)切断高频电路及长、短弧焊控制电路:长、短弧焊是用开关SA2控制的。当SA2切换到“短焊”位置时,按下焊接手把上的微动开关SM,触头28和27接通,继电器KMI吸合,接通了继电器KMT,电磁气阀线圈YV通电,开始供氩,指示灯HL2亮,同时焊接电源主接触器(ZX(二7-300型整流弧焊机)继电器KM3吸合,使继电器KMS工作,接通了高频振荡器,使工件与电极击穿,建立电弧之

后,KM3因电弧电压降低释放,并切断了触点KMS,使高频振荡器停止工作。此时整流弧焊机仍在运行,弧焊正常进行。

因篇幅问题不能全部显示,请点此查看更多更全内容