《3.2
解一元一次方程——移项》教学设计
广兴学校 侯淑贞
【教学目标】 一、知识与技能
1、通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.
2、掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程. 二、过程与方法
通过解形如“ax+b=cx+d”的方程,使学生感受解法中蕴涵的化归方法,体验数学中的建模思想. 三、情感态度与价值观
1、培养学生积极思考,勇于探索的精神。
2、通过探究实际问题与一元一次方程的关系,感受数学的应用价值。 【教学重点】
建立方程解决实际问题,会解 “ax+b=cx+d”类型的一元一次方程. 【教学难点】
分析实际问题中的已知量和未知量,找出相等关系,列出方程。 【教学方法】讲练结合 【课前准备】多媒体课件 【教学课时】1课时。 【教学过程】 一、情景引入
【设计意图】以故事情景引入课题,使学生能积极思考,激发了学生浓厚的学习兴趣,使学生快速投入学习中去,既复习了等式的性质又为下面的探究埋下伏笔。
从前有一只狡猾的狐狸,它平时总喜欢捉弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x-2=2x-2,等号两边同时加上2得5x-2+2=2x-2+2,即5x=2x.等式两边同时除以x得,5=2。”老虎瞪大了眼睛,听傻了。请你们想一想,狐狸说的对吗?为什么?
显然,狐狸的说法是不对的,那是为什么呢? 二、自主学习
【活动1】自学课本88页问题2,圈出题里关键的词,并回答下列问题:
把一些图书分给七年级某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生? (以学生身边的实际问题展开讨论,让学生感受数学来源于生活,又服务于生活) 【设计意图】进一步渗透模型化思想,引发学生认知上的冲突,寻求解决途径,感受解决问题的方法与思路。
1、设未知数:设这个班有x名学生。根据第一种分法,分析已知量和未知量间的关系;
(1)每人分3本,那么共分出___3x___本;共分出3x本和剩余的20本,可知道这批书共有___(3x+20)_____本;
根据第二种分法,分析已知量与未知量之间的关系.
(2)每人分4本,那么需要分出__4x_____本;需要分出4x本和还缺少25本那么这批书共有
_____(4x-25)___本; 2、找相等关系:这批书的总数是一个定值(不变量),表示它的两个式子应相等; 3、列方程: 3x+20=4x-25.
注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”是一个基本的相等关系,也是列方程中常用的找等量关系的方法。. 三、合作探究
【活动2】探究移项法则
思考:怎样解方程3x+20=4x-25?
问题1:它与上节课我们学过的方程x+2x+4x=140在结构上有什么不同?(独立思考,小组讨论)
学生讨论后回答:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)
问题2:怎样才能使它转化为x=a(常数)的形式呢?
学生思考探索:要使方程右边不含x的项,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即 3x+20 -4x-20 =4x-25 -4x-20 即 3x-4x=-25-20 。
问题3:以上变形依据是什么? 学生:根据等式性质1。
将它与原来方程比较,相当于把原方程左边的+20变为-20 后移到方程右边,把原方程右边的4x变为-4x后移到左边.
归纳:像上面那样,把等式一边的某项变号后移到另一边,叫做移项. 方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,注意要先变号后移项. 小结:公元820年左右,中亚细亚的数学家阿尔·花拉子米曾经写过一本书,书名《对消与还原》,整本书重点是介绍方程的解法,这本书对后来数学的发展产生了很大的影响。书中提到的“对消”与“还原”,就是我们现在所说的“合并同类项”和“移项”。 练习1:慧眼找错
(1)由x=-5+2x得x =-2x+5; (2)由2x-3=x+5得2x+x=5-3;
(3)由2x-1=x+2得2x-x=-2+1;(4)由6x-8=-4x-2得6x+4x=-2+8
在解题过程中共同得出移项注意事项。
练习2:将下列方程进行移项变换(口答)
(1) 3 x -4=1 (2) 2 x +3=5,
(3) 5 x = x +1 (4) 2 x -7=-5 x (5) 4 x =3 x -8 (6) x =3 x -5 x -9 【活动3】探究解ax+b=cx+d型方程的一般步骤
1、教师以框图规范解方程3x+20=4x-25的具体过程,要求学生明确每个步骤的依据。
师生总归纳结解ax+b=cx+d型方程的一般步骤:①移项;②合并同类项;③系数化为1 思考:
问题4:移项解这个方程时,移“谁”?怎么移? 问题5:解方程中“移项”作用是什么? 学生讨论、回答,师生共同整理:
通过移项,可以简化方程,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。解方程的过程蕴含了数学中的化归思想。 2、例题示范 学生口述解题,教师板书规范思路、格式。
【设计意图】进一步巩固利用移项,合并同类项解方程的方法。 四、展示反馈
【活动4】综合运用 【设计意图】通过对移项方法的尝试运用,加深对该方法的理解与掌握突出本节课的重点,使学生能够掌握解决形如“ax+b=cx+d”的方程。 出示课本上第90页练习第1题.(1)6x-7=4x-5 (2) 2 x-6= 4x (要求每组每人做1题,选代表上黑板解答,其他做完后对调批改,教师巡视指导.)
(补充练习)(3)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是多少? 五、 课堂小结
通过本节课的学习,你有哪些收获?
1、解一元一次方程的又一种方法——移项
移项的依据是什么?移项的目的是什么?在移项过程中注意什么?
等式的性质1,使方程的已知项和未知项分别位于方程的左边和右边,使方程更接近于ax=b的形式,注意移项要变号.
2、解形如“a x +b=c x +d”的方程的一般步骤:①移项;②合并同类项;③系数化为1。
3、今天学习了两种数学思想,请你说说它们分别是什么? 建模思想;化归思想. 4、解决情景问题。
六、当堂测试
1、下列移项正确的是( ) A.从12-2 x =-6,得到12-6=2 x
B.从-8 x +4=-5 x -2,得到-8 x +5 x =-2-4 C.从5 x +3=4 x +2,得到5 x -2=4 x -3
D.从-3 x -4=2 x -8,得到8-4=2 x -3 x 。
2、对方程7x =6+4x进行移项,得_______,合并同类项,得_______,系数化为1,得_______.
3、当x = _______时, 5 x -8与x互为相反数。
4、写出一个一元一次方程,使得方程的解为x =-3,且方程的等号两边都含
1
3
有未知数项和常数项. 5、解方程:
(1) x-1=-5+2x (2)10y+7=12y-5-3y
6、小明根据方程5x+2=6x-8编写了一道应用题,请你把空缺部分补充完整并解该方程。某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,就比计划少2个; ________ 。请问手工小组有几人(设手工小组有x人)? 7、盈不足术是我国古代数学中的优秀算法.《九章算术》有这样一个问题: 今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?(译:一些人共同买东西,每人出八元钱,则多三元钱,每人出七元钱,则少四元钱.问有多少人,物价又是多少?)
【拓展训练】
某同学在解方程 5x+2=■x+3时,把■处的数字看错了,解的x=-4/3 则该同学把■看成多少?
七、作业布置
课本第91页习题3.2第3题、第11题.
八、板书设计:
3.2解一元一次方程——移项
一、移项 二、例题讲解 1、移项法则 例3
2、移项的中注意事项 三、数学思想
,
因篇幅问题不能全部显示,请点此查看更多更全内容