explorationsbetweenintuitionisticpropositionallogicandintuitionisticarithmetic
AlbertVisser
DepartmentofPhilosophy,UtrechtUniversityHeidelberglaan8,3584CSUtrecht,TheNetherlands
email:Albert.Visser@phil.uu.nl
December14,2002
DedicatedtoAnneTroelstraontheoccasionofhis60thbirthday.
Abstract
Thispaperisconcernedwithnotionsofconsequence.Ontheonehand
westudyadmissibleconsequence,specificallyforsubstitutionsofΣ01-sentencesoverHeytingArithmetic(HA).Ontheotherhandwestudypreservativityrelations.Thenotionofpreservativityofsentencesoveragiventheoryisadualofthenotionofconservativityofformulasoveragiventheory.
WeshowthatadmissibleconsequenceforΣ01-substitutionsoverHAcoincideswithNNIL-preservativityoverintuitionisticpropositionallogic(IPC).HereNNIListheclassofpropositionalformulaswithnonestingsofimplicationstotheleft.
TheidenticalembeddingofIPC-derivability(consideredasapreorderand,thus,asacategory)intoaconsequencerelation(consideredasapreorder)hasinmanycasesaleftadjoint.ThemaintoolofthepresentpaperwillbeanalgorithmtocomputethisleftadjointinthecaseofNNIL-preservativity.
InthelastsectionweemploythemethodsdevelopedinthepapertogiveacharacterizationtheclosedfragmentoftheprovabilitylogicofHA.
Keywords:ConstructiveLogic,PropositionalLogic,Heyting’sArithmetic,Schema,Admis-sibleRule,ConsequenceRelation,ProvabilityLogicMSC2000codes:03B20,03F40,03F45,03F55
1
Contents
1Introduction
1.1PropositionalLogic.1.2Arithmetic......1.3Provabilitylogic..1.4HistoryandContext1.5Acknowledgements..............................................................................................................................3345671.6Prerequisites....
.........................
2FormulasofPropositionalLogic
3Semi-consequence
3.1BasicDefinitons...........................3.2PrinciplesInvolvingImplication...................4Preservativity
4.1BasicDefinitions...........................4.2ExamplesofPreservativityRelations....
............4.2.1TheLogicofaTheory....................4.2.2AdmissibleConsequence...................4.2.3AResultofPitts.......................4.3BasicFacts..............................4.4ASurveyofResultsonPreservativity...
............4.4.1DerivabilityforIPC......................4.4.2AdmissibleConsequenceforIPC..............4.4.3AdmissibleRulesforΣ-SubstitutionsoverHA.......5ApplicationsofKripkeSemantics5.1SomeBasicDefinitions........................5.2TheHenkinConstruction......................5.3MoreDefinitions...........................5.4ThePushDownLemma.......................
6RobustFormulas7TheNNIL-Algorithm
8BasicFactsandNotationsinArithmetic8.1ArithmeticalTheories........................8.2ABriefIntroductiontoHA∗.....................9ClosurePropertiesofΣ-Preservativity9.1ClosureunderB1...........................9.2AClosureRuleforImplication...................10OnΣ-Substitutions
2
77889101011121212131515151616161717171921
27272830303235
11TheAdmissibleRulesofHA12ClosedFragments
12.1Preliminaries.........12.2TheClosedFragmentforHA∗12.3TheClosedFragmentofPA.12.4TheClosedFragmentofHA.12.5ComparingThreeFunctors.12.6Questions...........AAdjointsinPreorders
BCharacterizationsandDependenciesCModalLogicforΣ-Preservativity
........................................................................................................................
3637374242444545495052
1Introduction
Thispaperisastudybothofconstructivepropositionallogicandofconstruc-tivearithmetic.Inthecaseofarithmeticthefocusisnotonprooftheoreticalstrengthbutonthe‘logical’propertiesofarithmeticaltheories.
Iwillfirstexplainthecontentsofthepartofthepaperthatisconcernedpurelywithpropositionallogic.Thispartisindependentofthearithmeticalpartandcouldbestudiedonitsown.Afterthat,Iwillexplainthearithmeticalpart.
1.1PropositionalLogic
Intuitionisticpropositionallogic,IPC,differsfromclassicalpropositionallogicinthatitadmitsnaturalhierarchiesofformulas.ThefirstlevelofoneofthesehierarchiesisformedbytheNNIL-formulas.‘NNIL’standsfornonestingsofimplicationstotheleft.Thus(p→(q→(r∨(s→t))))isaNNIL-formulaand((p→q)→r)isn’t.NNILformulasaretheanaloguesofpurelyuniversalsentencesintheprenexnormalformhierarchyforclassicalpredicatelogic,inviewofthefolowingcharacterization:moduloIPC-provableequivalencethisclasscoincideswithROBtheclassofformulasthatarepreservedundertakingsub-Kripke-models.1
fact,thereisawayofstrengtheningthecharacterization,thatmakesNNILanatural
subclassofthepurelyuniversalformulasofaspecifictheoryinpredicatelogic.WecanreformulateKripkesemanticsinafamiliarwayasatranslationofIPCintoasuitabletheoryinpredicatelogic,sayT,ofKripkestructures.OnecancharacterizetheformulasofIPC,moduloT-provableequivalence,aspreciselythepredicatelogicalformulasinonefreevariablethatareupwardspersistentandpreservedunderbisimulation.TheNNIL-formulasare,moduloprovableequivalence,preciselythepredicatelogicalformulasinonefreevariablethatareupwardspersistent,preservedunderbisiuationandpreservedundertakingsubmodels.Thus,theNNIL-formulasare,moduloprovableequivalence,preciselythepurelyuniversalformulasofTthatcorrespondviathetranslationtoIPC-formulas.See[VvBdJdL95].
1In
3
HereROBstandsforrobust.Thecharacterizationcanbeprovedinatleasttwoways.Oneproofispresentedin[VvBdJdL95].TheideaofthisproofisduetoJohanvanBenthem.VanBenthem’sproofisanalogoustotheclassicalproofofLo´s-Tarskitheorem.Seealso[vB95].Anotherproofiscontainedinthepreprints[Vis85]and[Vis94].Thissecondproofistheonepresentedinthispaper(seesection7).Thebasicideaoftheproofisthat,givenanar-bitrarypropositionalformulaA,onecomputesitsbestrobustapproximationfrombelow,sayA∗.ThecomputationwillterminateinaNNIL-formula.SinceNNIL-formulasaretriviallyrobust,itfollowsthatrobustformulascanalwaysberewrittentoIPC-equivalentNNIL-formulas.
Reflectingontheproof,oneseesthatitisbestunderstoodintermsofthefollowingnotions.WedefineIPC,ROB-preservativityasfollows:•A£IPC,ROBB:⇔∀C∈ROB(CIPCA⇒CIPCB).
TheclaimthatA∗isthebestrobustapproximationofA,canbeanalysedtomeanthefollowing:A£IPC,ROBB⇔A∗IPCB.Thus(·)∗istheleftadjointoftheidenticalembeddingofIPCconsideredasapreorder(andthusasacategory)into£IPC,ROBconsideredasapreorder.Asaspin-offofourproofweobtainan‘axiomatization’of£IPC,ROB.
Preservativitycanbeviewedasdualtoconservativityofsentencesoveragiventheory.Notethatintheconstructivecontextpreservativityandconser-vativitycannotbetransformedintoeachother(moduloprovableequivalence).Anotherimportantnotionofconsequenceisadmissibleconsequence,dis-cussedinthenextsection.Inthepresentpaperwewillstudythetwoconse-quencenotions,preservativity&admissibility,intandem.
1.2Arithmetic
AΣ01-formulaisaformulainthelanguageofarithmeticconsistingofablockofexistentialquantifiersfollowedbyaformulacontainingonlyboundedquan-tifiers.AΠ01-formulaisaformulainthelanguageofarithmeticconsistingofablockofuniversalquantifiersfollowedbyaformulacontainingonlyboundedquantifiers.Wewilloftenwrite‘Σ-formula’and‘Π-formula’forΣ01-formula,re-spectivelyΠ01-formula.Intheclassicalcontext,Σ-formulasandΠ-formulasareinterdefinableusingonlyBooleanconectives:aΠ-formulaisthenegationofΣ-formulaandaΣ-formulaisthenegationofaΠ-formula.Constructively,underminimalarithmeticalassumptions,aΠ-formulaisstillprovablyequivalenttothenegationofaΣ-formula,bute.g.overHeyting’sArithmetic,wehavethatifaΣ-sentenceisprovablyequivalenttoanyBooleancombinationofΠ-sentences,thenitiseitherprovableorrefutable.2
Itisacommonobservation,thatifwehaveprovedsomeBoolean(or,per-haps,‘Brouwerian’)combinationofΣ-sentencesinHeytingArithmetic,(HA),thenweoftenknowthatabetterBooleancombinationofthesameΣ-sentences
waytoprovethisisbyusingcorollary9.2incombinationwiththedisjunctionprop-ertyofHeyting’sArithmetic.
2One
4
isalsoprovable.MoreoverthisbetterBooleancombinationcanbefoundinde-pendentlyofthespecificΣ-sentencesunderconsideration.
Suppose,forexample,thatwehavefoundthatHA¬¬S→S.Then,usingtheFriedmantranslation,wemayshowthatonealsohas:HAS∨¬S.Inwhichsenseis(S∨¬S)betterthan(¬¬S→S)?Well,wehave
p∨¬pIPC¬¬p→pbutnot¬¬p→pIPCp∨¬p.
Sotheformof(S∨¬S)ismoreinformativethantheformof(¬¬S→S).Canwedostillbetterthan(S∨¬S)?Yesandno.Yes,sinceHAhasthedisjunctionpropertywedohaveeitherHASorHA¬S.Thus,foraspecificS,wecanfindafurtherimprovement.No,ifwedemandthattheimprovementdependonlyontheformoftheBooleancombinationofΣ-sentences,inotherwords,ifwewanttheimprovementtobeuniformforarbitrarysubstitutionsofΣ-sentences.
Analyzingtheseideas,onearrivesatthefollowingexplicationofwhatoneislookingfor.LetPbeasetofpropositionalvariables.ΣPisthesetofassignmentsofΣ-sentencestothepropositionalvariables.LetfbesuchanassignmentofΣ-sentences.WewritefAfortheresultofsubstitutingthefp’sforpinA.IfwewanttostressthefactthatweliftedfonPtoafunctiononthefulllanguageofpropositionallogicoverP,wewrite[f]fortheresultofthelifting.Thus[f]isasubstitutionofΣ-sentences.WedefinetherelationofHA,Σ-admissibleconsequenceasfollows.LetA,BbeIPC-formulas.•A∼HA,ΣB⇔∀f∈ΣP(HAfA⇒HAfB).
ConsiderapropositionalformulaA.Let’scallA’sdesiredbestimprovementA∗.WewillshowthatA∗alwaysexistsandsatisfiesthefollowingclaim:
A∼HA,ΣB⇔A∗IPCB.
Astheattentivereaderwillhaveguessed,(·)∗ofsubsection1.1isidenticalto(·)∗ofsubsection1.2.Thus,wealsohave:∼HA,Σ=£IPC,ROB.
1.3Provabilitylogic
Pureprovabilitylogichas,inmyopinion,twogreatopenproblems.ThefirstoneistocharacterizetheprovabilitylogicsofWilkieandParis’theoryI∆0+Ω1andofBuss’theoryS12.Thisproblemhasbeenextensivelystudiedin[Ver93]and[BV93].ThesecondproblemistocharacterizetheprovabilitylogicofHA.Thisproblemisstudiedin[Vis81],[Vis82],[Vis85]and[IemXX].
InthepresentpaperwewillpresentfullcharacterizationsfortwofragmentsoftheprovabilititylogicofHA.ThefirstisthecharacterizationofallformulasoftheformPA→PB,validintheprovabilitylogicofHA,whereAandBarepurelypropositional.ThischaracterizationisduetoRosalieIemhoff.Seeher
5
paper[Iem99].ThesecondoneisthecharacterizationoftheclosedfragmentoftheprovabilitylogicofHA.Thisismyoldresult,reportedfirstin[Vis85].3
Intheappendixofthepresentpaper,IformulateaconjectureabouttheprovabilitylogicofHA.PartofthisconjectureisthatthislogicisbestformulatedinthericherlanguagecontainingabinaryconnectiveforΣ-preservativity.
1.4HistoryandContext
Theresultsreportedinthispapertookalongtimefromconceptiontopublica-tion.Themainpartofthisresearchherewasdonebetween1981and1984.Theprimaryobjectsofthisresearchwere(i)thecharacterizationoftheclosedfrag-mentofHAand(ii)generalizingtheresultsofDickdeJonghonpropositionalformulasofonevariable(see[dJ82]).4Theresultsofthisresearchwerereportedinthepreprint[Vis85].Forvariousreasons,however,thepreprintwasneverpublished.In1994Icompletelyrewrotethepaper,resultinginthepreprint[Vis94].However,again,thepaperwasnotpublished.Thepresentversion,writtenin2000,isanextensiveupdateofthe1994preprint.
Toputthepresentpaperinabroadercontextofresearch,letmebrieflysumupsomerelatedwork.
Firsttherearemanyresultsonlogicsoftheories(seesubsubsection4.2.1).ForsimplepropositionallogicthereisDeJongh’stheoremsayingthatthepropositonallogicofHAandrelatedtheoriesispreciselyIPC.Seee.g.[Smo73],[Vis85],[dJV96]forsomeproofs.Inthecaseofe.g.HA+MP+ECT0,wegetastrongerlogic.Seee.g.[Gav81].Aprecisecharacterizationofthislogicisstilllacking.FordeJongh’stheoremforPredicateLogic,see[dJ70],[Lei75],[vO91].Negativeresultsforthecaseofintuitionisticpredicatelogicarecontainedin[Pli77],[Pli78]and[Pli83].Forthestudyofschemesintheclassicalpredicatecalculus,thereaderisreferredto[Yav97].
Secondly,wehaveprovabilitylogic.Heretheschematiclanguagesarelan-guagesofmodallogic.Thereaderisreferredtotheexcellenttextbooks[Smo85]and[Boo93].Fortheworkinthispaper,thedevelopmentofinterpretabilitylogicisofparticularinterest.Seethesurveypapers[JdJ98]and[Vis98a].Ourcen-tralnotionΣ-preservativityiscloselyrelatedtothenotionofΠ01-conservativity,studiedininterpretabilitylogic.Thisconnectionturnsouttobereallyuseful:theexpertisegeneratedbyresearchintoKripkemodelsforinterpretabilitylogic,isnowusedbyRosalieIemhoffinthestudyoftheprovabilitylogicofHAandofadmissiblerules.See[IemXX]and[Iem99].
problemtocharacterizetheclosedfragmentoftheprovabilitylogicofPAwasFried-man’s35thproblem.See[Fri75].ItwassolvedindepentlybyvanBenthem,MagariandBoolos.
4ThefullgeneralizationofdeJongh’sresultshadtowaittill1998(see[Vis99]).Thecruciallemma,wasprovedbySilvioGhilardi,followingaratherdifferentlineofenquiry.See[Ghi99].Ghilardi’slemmacharacterizestwoclassesofpropositionalformulas,theprojectiveformulasandtheexactformulasaspreciselythosewiththeextensionproperty—apropertyformulatedintermsofKripkemodels.GuramBezhanishvilishowedmethatGhilardi’slemmacanalsobeobtainedbyapplyingtheworkofR.Grigolia.See[Gri87].
3The
6
Thirdly,theworkonaxiomschemescanbegeneralizedtothestudyofadmissiblerules,exactformulas,unificationandthelike.Wereferthereaderto[Lei80],[dJ82],[Ryb92],[dJC95],[dJV96],[Ryb97],[Ghi99],[Iem99].Acloselyrelatedsubjectisuniforminterpolation.See[Pit92],[GZ95a],[GZ95b]and[Vis96].
Fourthlyandfinally,thereistheissueofformulaclasses,likeNNIL,andtheircharacterization.Thesemattersaretakenupine.g.[Lei81],[vB95],[VvBdJdL95]5,[Bur98]and[Vis98b].
1.5Acknowledgements
InvariousstagesofresearchIbenefitedfromthework,thewisdomand/ortheadviceof:JohanvanBenthem,GuramBezhanishvili,DirkvanDalen,RosalieIemhoff,DickdeJongh,KarstKoymans,JaapvanOosten,PietRodenburg,VolodyaShavrukov,RickStatman,AnneTroelstraandDomenicoZambella.LevBeklemishevspottedasillymistakeinthepenultimateversionofthepaper.Iamgratefultotheanonymousrefereeforhis/herhelpfulcomments.IthankSanderHermsenformakingthepicturesforthispaper.
1.6Prerequisites
Someknowledgeof[TvD88a],[TvD88b]iscertainlybeneficial.AtsomeplacesIwillmakeuseofresultsfrom[Vis82]and[dJV96].
2FormulasofPropositionalLogic
Inthissectionwefixsomenotations.WealsointroducethecentralformulaclassNNIL.
P,Q,...willbesetsofpropositionalvariables.p,q,r,...willbefinitesetsofpropositionalvariables.WedefineL(P)asthesmallestsetSsuchthat:•P⊆S,,⊥∈S,
•IfA,B∈S,then(A∧B),(A∨B),(A→B)∈S.
sub(A)isthesetofsubformulasofA.Byconventionwewillcount⊥asasubformulaofanyA.pv(A)isthesetofpropositionalvariablesoccurringinA.Wedefineameasureofcomplexityρ,whichcountstheleft-nestingof→,asfollows:
•ρp:=ρ⊥:=ρ:=0
•ρ(A∧B):=ρ(A∨B):=max(ρA,ρB)•ρ(A→B):=max(ρA+1,ρB)
5This
papermaybeconsideredasacompanionpaperofthepresentpaper.
7
NNIL(P):={A∈L(P)|ρA≤1}.InotherwordsNNIListheclassofformulaswithoutnestingsofimplicationstotheleft.AnexampleofaNNIL-formulais:(p→(q∨(s→t)))∧((q∨r)→s)).ItiseasytoseethatmoduloIPC-provableequivalenceeachNNIL-formulacanberewrittentoaNNIL0-formula,i.e.afor-mulainwhichasantecedentsofimplicationsonlysingleatomsoccur.FormoreinformationaboutNNIL,see[dJV96]and[VvBdJdL95].Forageneralizationoftheresultof[VvBdJdL95]tothecaseofpredicatelogic,see[Vis98b].
3Semi-consequence
Inthissectionweintroducethebasicnotionofsemi-consequencerelation.‘£’willrangeoversemi-consequencerelations.LetstandforderivabilityinIPC.
3.1BasicDefinitons
LetBbealanguage(forpropositionalorpredicatelogic)andletTbeatheoryinB.Asemi-consequencerelationonBoverTisabinaryrelationonthesetofB-formulassatisfying:A1A2A3
ATB⇒A£B
A£BandB£C⇒A£CC£AandC£B⇒C£(A∧B)
Thename‘semi-consequencerelation’isadhocinthispaper.Wetake:•A≡B:⇔A£BandB£A.
Ifwedon’tspecifythetheorycorrespondingtothesemi-consequencerelation,itisalwayssupposedtobeoverIPC.Afurthersalientprincipleis:•B1A£CandB£C⇒(A∨B)£C.
ArelationsatisfyingA1-A3andB1iscalledanearly-consequencerelation.NotethatTisanearly-consequencerelationoverT.WewilluseXY,X£YforrespectivelyXYandX£Y,whereXandYarefinitesetsofformulas.Here∅:=and∅:=⊥.Wetreatimplicationssimilarly,writing(X→Y)for(X→Y).WewriteX,YforX∪Y;X,AforX∪{A},etcetera.
Nearly-consequencerelationsoverTcanbealternativelydescribedinGenzenstyleasfollows.Nearly-consequencerelationsarerelationsbetween(finietesetsof)formulassatifyingthefollowingconditions.A1ThinCut
XTY⇒X£YX£Y⇒X,Z£Y,U
X£Y,AandZ,A£U⇒X,Z£Y,U
8
Wetakethepermutationrulestobeimplicitinthesetnotation.WeleaveittothereadertochecktheequivalenceoftheGenzenstyleprincipleswithA1-A3plusB1.
Wewillbeinterestedinadjointsinvolvingsemi-consequencerelations.SomebasicfactsconcerningadjointsandpreordersaregiveninappendixA
3.2PrinciplesInvolvingImplication
Principlesinvolvingimplicationplayanimportantroleinthepaper.Infact,themainreasonforthecomplexityofe.g.theadmissiblerulesofIPC,theadmissiblerulesofHAandtheadmissiblerulesofHAforΣ-substitutionsisthepresenceofnestedimplicationsandtheinterplayofimplicationsanddisjunctions(intheantecedent).
Regrettably,theprinciplesinvolvingimplicationneededtocharacterizead-missibleconsequenceandΣ-preservativityarenevergoingtowinabeautycon-test.
Theprincipesintroducedbelow,allowustoreducethecomplexityofformu-las.E.g.ifaformulaoftheform(C→D)→(E∨F)isprovableinIPC(HA),thenalso((C→D)→C)∨((C→D)→E)∨((C→D)→F)isprovableinIPC(HA).Theremovalofthedisjunctionfromtheconsequentmakesfurthersimplificationpossible.
Atthispoint,wewilljustintroducetheprinciplesinfullgenerality.Theywillbecomemoreunderstandableinthelightoftheirverifications(forvariousnotionsofconsequence)ine.g.theorem6.2andtheorem9.1.
Tointroducetheprinciplesweneedsomesyntacticaloperations.Wedefinetheoperations[·](·)and{·}(·)onpropositionalformulasasfollows.•
–[B]p:=p,[B]:=,[B]⊥:=⊥,–[·](·)commuteswith
∧
and
∨
inthesecondargument,
–[B](C→D):=(B→(C→D)).•
–{B}p:=(B→p),{B}:=,{B}⊥:=⊥,–{·}(·)commuteswith
∧
and
∨
inthesecondargument,
–{B}(C→D):=(B→(C→D)).
Notethat[·](·)and{·}(·)donotpreserveprovableequivalenceinthesecondargument.NotealsothatB→([B]C↔C)andB→({B}C↔C).Define[B]X:={[B]C|C∈X}.
Wewillstudythefollowingprinciplesforimplicationforsemi-consequencerelationsonL(P).B2
LetXbeafinitesetofimplicationsandlet
Y:={C|(C→D)∈X}∪{B}.
TakeA:=
X.Then(A→B)£[A]Y
9
B2
LetXbeafinitesetofimplicationsandlet
Y:={C|(C→D)∈X}∪{B}.
TakeA:=
X.Then(A→B)£{A}Y.
B3A£B⇒(p→A)£(p→B).
ItiseasytoseethatB2canbederivedfromB2overA1-A3.NotethatbothB2,B2andB3arenon-ordinaryschemes.B2andB2involvefiniteconjunctionsanddisjunctionsandB2andB3containvariablesrangingoverpropositionletters.(ItiseasytoseethatonecanreplaceB2byanequivalentschemethatmakesnospecialmentionofpropositionletters.Seealso[Iem99].)Thefactthatpropositionlettersarenot‘generic’inB2andB3,reflectsourinterestincertainspecialsubstitutions,likesubstitutionsofΣ-sentences.Ifwespellouttheconclusionofe.g.B2,weget:
(A→B)£{[A]C|(C→D)∈XorC=B}.WegiveanexampleofauseofB2.Suppose£satisfiesB2.Let
E:=((p→q)∧(r→(s∨t))),F:=(E→(u∨(p→r))).
ThenwehaveF£(p∨r
∨
u∨(E→(p→r))).
Remark3.1RosalieIemhoffhasshownthatB2cannotbereplacedbyfinitely
manyconventionalschemes.Thisisanimmediateconsequenceofthemethodsdevelopedin[Iem99].IconjecturethatasimilarresultholdsforB2.
WesaythatarelationsatisfyingA1,A2,A3,B1,B2,B3isaσ-relation.WesaythatarelationsatisfyingA1,A2,A3,B1,B2isanα-relation.Wetakeσtobethesmallestσ-relation,i.o.wσisthesemi-consequencerelationaxiomatizedbyA1,A2,A3,B1,B2,B3.Similarly,αisthesmallestα-relation.
4Preservativity
Inthissectionweintroducepreservativityrelationswhicharespecialsemi-consequencerelations.Infact,wewilltreatsomesemi-consequencerelationsthatarenotpreservativityrelations:wewillalsoconsiderrelationslikeprovablydeductiveconsequence.Treatmentofthesefurtherrelationsispostponedtillsection12.
4.1BasicDefinitions
ConsideragainanylanguageBofpropositionalorpredicatelogic.IfA∈L(P)andf:P→B,thenfAistheresultofsubstitutingfpforpinAforeachp∈P.IfwewanttostressthatwearespeakingoffasL(P)→Bwewilluse[f].LetX⊆B,letTbeanytheoryinBandletFbeasetoffunctionsfromPtoB.Wewrite:
10
•forA,B∈B,A£T,XB:⇔∀C∈X(CTA⇒CTB)•forA,B∈L(P),A£T,X,FB:⇔∀f∈FfA£T,XfB.
IfY⊆BandF=YP,wewillwrite£T,X,Yfor£T,X,F.IfXorFaresingletonswewillomitthesingletonbrackets.IfB=L(P)andT=IPC,wewilloftenomit‘T’intheindex.Wewillcall£T,X,F,T,X,F-preservativity,etcetera.Wewillcallthe£T,X,Fandthe£T,Xpreservativityrelations.Wewillcallthe£T,Xpurepreservativityrelations.
Clearly£T,Xisasemi-consequencerelationoverTand£T,X,Fisasemi-consequencerelationoverIPC.Belowwewillprovideanumberofmotivatingexamplesforourdefinitions.
Remark4.1Itisinstructivetocomparepreservativitywithconservativity(ofsentencesoveratheory).Define:
•ForA,B∈B,A£∗T,XB:⇔∀C∈X(BTC⇒ATC)
SoA£∗T,XBmeansthatT+BisconservativeoverT+Aw.r.t.X.ForclassicaltheoriesTwehave:
A£T,XB⇔¬B£∗T,¬X¬A,where¬X:={¬C|C∈X}.
Thus,intheclassicalcasepreservativityisasuperfluousnotion.Inthecon-structivecase,however,thereductiongivenindoesnotwork.Notethat
conservativityasarelationbetweensentencesoveratheoryisanaturalexten-sionofthenotionofconservativitybetweentheories.Thereisnoanalogueofthisforpreservativity.
ItshouldbenotedthatΠ02-conservativitybetweentheoriesisacentralcon-ceptualtoolfortheorycomparison.Theonlyothernotionsoftheorycompari-sonofcomparableimportancearerelativeinterpretabilityandverifiablerelativeconsistency.Π01-conservativityforREextentensionsofPeanoArithmetic,PA,inthelan-guageofPAisequivalenttorelativeinterpretabilityforthesetheories.Intheconstructivecase,relativeinterpretabilityplaysamuchmoremodestrole.Manytranslationsthatdonotcommutewiththelogicalconnectives,playasignificantrole.Moreover,themetamathematicalpropertiesofrelativeinterpretabilityaremuchdifferent.WecertainlydonothaveanythingresemblingtheconnectionbetweenrelativeinterpretabilityandΠ1-conservativity.Π01-conservativityofsentencesoverHeyting’sArithmetic,HA,isreducibletoΣ-preservativityoverHAby:•
A£∗B⇔¬B£HA,Σ0¬A.HA,Π01
1
Asanauxiliarynotiontoprovemetamathematicalresults,Σ-conservativityover
HAisthemoreusefulnotion,aswillbeillustratedinterestofthepaper.
4.2ExamplesofPreservativityRelations
Inthissubsectionweprovideexamplesofpreservativityrelationsandwereviewsomeresultsfromtheliteratureconcerningtheseexamples.
11
4.2.1TheLogicofaTheory
IfwetakeX:=B,then£T,XissimplyequaltoT.Moreinterestinglyweconsider£T,B,F.Itiseasytoseethat:
A£T,B,FB⇔∀f∈FfATfB.
Wedefine:
•ΛT,F:={A|∀f∈FTfA}.
•ΛT:=ΛT,BP.ThetheoryΛTisthepropositionallogicofT.Itiseasytoseethat:
A£T,B,FB⇔ΛT,F(A→B)ΛT,FA⇔£T,B,FA
DeJongh’sCompletenessTheoremforΣ-substitutionstellsusthatΛHA=ΛHA,Σ=IPC.TherearemanydifferentproofsofDeJongh’stheorem,seee.g.[Smo73]or[Vis85]or[dJV96].4.2.2
AdmissibleConsequence
IfwetakeX:={},then,forA,B∈B,wefind
A£T,B⇔(TA⇒TB).
Thus£T,istherelationofdeductiveconsequenceforT.Moreover,forA,B∈L(P),
A£T,,FB⇔∀f∈F(TfA⇒TfB).Wefindthat£T,,FisadmissibleconsequenceforTw.r.t.F.Wedefine:•A∼T,FB:⇔A£T,,FB,•A∼TB:⇔A∼T,BB.
Wewillprovidemoreinformationaboutadmissibleconsequenceinsubsec-tion4.4.4.2.3
AResultofPitts
SupposeQ⊆P.LetR:=P\\Q.Consider£IPC,L(Q).Bytheorem5.3below,incombinationwithlemma4.2(2)below,£IPC,L(Q)isanearly-consequencere-lation.AndrewPitts,inhis[Pit92],showsthatforeveryA∈L(P),thereisaformula(∀RA)∈L(Q),suchthatforallB∈L(P):A£IPC,L(Q)B⇔∀RAB.ForasemanticaltreatmentofPitt’sresultsee[GZ95a]or[Vis96].Ofrelatedinterestisthepaper[GZ95b].
12
4.3BasicFacts
Wecollectsometechnicalfactsaboutpreservativity.AformulaAofBisT-primeif,foranyfinitesetofB-formulasZ,ATZ⇒∃B∈ZATB.NotethatifAisT-prime,thenAT⊥.AclassofformulasXisweaklyT-disjunctiveifeveryA∈XisequivalenttothedisjunctionofafinitesetofT-primeformulasY,withY⊆X.
ForanyclassofformulasX,letdisj(X)betheclosureofXunderarbitrarydisjunctions.Inthenextlemmawecollectanumberofnoteworthysmallfactsonpreservativity.
Lemma4.21.£T,Xisasemi-consequencerelationoverT.£T,X,Fisa
semi-consequencerelationoverIPC.2.SupposeXisweaklyT-disjunctive,then£T,Xand£T,X,Farenearly-consequencerelations.3.SupposeXisclosedunderconjunction,then:
C∈XandA£T,XB⇒(C→A)£T,X(C→B).
4.Letrange(F)betheunionoftherangesoftheelementsofF.Supposethatrange(F)⊆XandthatXisclosedunderconjunction,then£T,X,FsatisfiesB3.5.SupposeA∈X.ThenA£T,XB⇔ATB.
6.SupposeX⊆YandF⊆G,then£T,Y⊆£T,Xand£T,Y,G⊆£T,X,F.7.£T,disj(X)=£T,Xand,hence,£T,disj(X),F=£T,X,F.
8.Letid:P→L(P)betheidenticalembedding.Then£IPC,X,id=£IPC,X.9.IfThasthedisjunctionproperty,then∼Tand∼T,FsatisfyB1.
Proof
Wetreat(2)and(3).(2)SupposeXisweaklyT-disjunctiveandA£T,XCandB£T,XC.LetEbeanyelementofX.SupposeYisafinitesetofT-primeformulasinXsuchthatEisequivalenttothedisjunctionofY.Wehave:
ETA∨B⇒YTA∨B
⇒
⇒⇒⇒⇒
∀F∈YFTA∨B
∀F∈YFTAorFTB∀F∈YFTC
YTCETC13
B1for£T,X,FisimmediatefromB1for£T,X.
(3)SupposethatXisclosedunderconjunctionandthatA£B.LetC,E∈XandsupposethatE(C→A).Then(E∧C)Aand,hence,(E∧C)B.ErgoE(C→B).PThenextlemmaisquiteusefulbothtoverifyleftadjointnessandtoshowthatcertainclassesofformulasareequalmoduloIPC-provableequivalence.Lemma4.3Let£beasemi-consequencerelationoverIPCandletΨ:L(P)→L(P),letX⊆L(P).Supposethat1.A£ΨA,2.ΨAIPCA,3.range(Ψ)⊆X,4.£⊆£IPC,X.Then,wehave:
•A£B⇔A£IPC,XB⇔ΨAIPCB,
•X=range(Ψ)moduloIPC-provableequivalence.
Proof
Undertheassumptionsofthelemma.Wehave:
A£B
⇒⇒⇒⇒⇒
A£IPC,XBΨA£IPC,XBΨAIPCBΨA£BA£B
assumption(4)assumption(2),(4)lemma4.2(5)assumption1
ConsideranyB∈X.WehaveB£ΨB.Hence,byassumption(4)andlemma4.2(5),BIPCΨB.Combiningthiswithassumption(2),wefindIPCB↔ΨB.PWeproveabasictheoremaboutadmissibleconsequence.Definefg:=[f]◦g.ItiseasytoseethatisassociativeandtheidenticalembeddingofPintoL(P)istheidentityfor.
Theorem4.4Suppose,ΛT,F=IPC.Moreover,supposethatG⊆L(P)Pandthat,foranyg∈Gandf∈F,(fg)∈F.Then,∼T,F⊆∼IPC,G.
14
Proof
SupposeA∼T,FBandgA.Consideranyf∈F.ClearlyTfgA,i.e.T(fg)A.Since(fg)∈F,wefind:T(fg)B.Hence,forallf∈F,TfgBand,hence,gB.PNotethatitfollowsthat∼IPCismaximalamongthe∼TwithΛT=IPC.
4.4ASurveyofResultsonPreservativity
Inthissectionwegiveanoverviewofresultsconcerningpreservativity.4.4.1
DerivabilityforIPC
TheminimalpreservativityrelationoverIPCisIPC.ThereisanextensionHA∗ofHA(seeinsubsection8.2),suchthatIPC=∼HA∗=∼HA∗,Σ.ThisresultwasprovedbydeJonghandVisserintheirpaper[dJV96],adaptingaresultofShavrukov(see[Sha93]or[Zam94]).NotethatbydeJongh’stheoremisalsofollowsthat:£HA,A,A=£HA,A,Σ=IPC.4.4.2
AdmissibleConsequenceforIPC
∼IPCisthemaximalrelation∼TfortheoriesTwithΛT=IPC.Thiswasshowninsubsection4.3.∼IPCstrictlyextendsIPC.E.g.theindependenceof
premissruleIP
¬p→(q
∨
r)∼IPC(¬p→q)∨(¬p→r)
isadmissiblebutnotderivable.Wehavethefollowingfacts.
1.∼IPCisdecidable.ThisresultisduetoRybakov.Seethepaper[Ryb92]orthebook[Ryb97].Theresultfollowsalso,alongadifferentroute,fromtheresultsin[Ghi99]or,alternatively,fromtheresultsin[Iem99].2.TheembeddingofIPCinto∼IPChasaleftadjoint,say(·).Sowehave:
A∼IPCB⇔AIPCB.
ThisresultisduetoGhilardi.Seehispaper[Ghi99].(·)doesnotcom-mutewithconjunction.
3.Thefollowingsemi-consequencerelationsareidentical:
∼IPC,
∼HA,
∼HA,BΣ,£IPC,EX,α.
Webrieflydiscusstheindividualidentities.
•∼IPC=∼HA.ThisresultisduetoVisser.Seehispaper[Vis99].Theresultcanbeobtainedinadifferentwayviatheresultsof[Iem99]andtheresultsofthispaper.Wewillgivetheargumentinsection11.
15
•∼IPC=∼HA,BΣ.ThisresultisduetodeJonghandVisser.Seetheirpaper[dJV96],corollary6.6.•∼IPC=£IPC,EX.ThisresultisimmediatefromtheresultsindeJonghandVisser’spaper[dJV96].HereEXisthesetofexactfor-mulas.Seee.g.[dJV96]foradefinition.
Ghilardi’sresultmentionedabovein(2)strengthensthistheorem,since,asitturnsout,therangeof(·)ispreciselydisj(EX).•∼IPC=α.ThisresultwasobtainedbyIemhoff.Seeherpaper[Iem99].
4.4.3
AdmissibleRulesforΣ-SubstitutionsoverHA
Obviously∼HA,Σextends∼HA,andthus,ipsofacto,∼IPC.Itfollowsfromresultstobeprovedbelowthat¬¬p→p∼HA,Σp∨¬p.However,wedonothave¬¬p→p∼IPCp∨¬p,aswitnessedbythesubstitutionp→¬q.
Wewillconnect∼HA,Σ,i.e.HA-admissibleconsequenceforΣ-substitutions,withtheformulaclassesNNIL,ROBandf-ROB.NNILisintroducedinsub-section2.ROBandf-ROBaredefinedinsection6below.WeshowthatNNIL=ROB=f-ROB(modIPC).Theresultwasfirstprovedinmyunpub-lishedpaper[Vis85].Wewillpresentaversionoftheproofinsection7ofthispaper.Adifferentproof,duetoJohanvanBenthem,iscontainedin[vB95].AversionofvanBenthem’sproofispresentedin[VvBdJdL95].Wewillfurtherprovethefollowingresults:1.∼HA,Σ=£HA,Σ,Σ=£IPC,NNIL=σ.
2.TheidenticalembeddingofIPCinto∼HA,Σhasaleftadjoint(·)∗.I.o.w.wehaveA∼HA,ΣB⇔A∗IPCB.Theseresultswereessentiallyalreadycontainedin[Vis85].
5ApplicationsofKripkeSemantics
Toprepareourselvesforsection6webrieflystatesomebasicfactsaboutKripkemodels.
5.1SomeBasicDefinitions
WesupposethatthereaderisfamiliarwithKripkemodelsforIPC.Twogoodintroductionsare[TvD88a]and[Smo73].Ourtreatmenthereismainlyintendedtofixnotations.AmodelisastructureK=K,≤,,P.HereKisanon-emptysetofnodes,≤isapartialorderingandisarelationbetweennodesandpropositionalatomsinP,satisfyingpersistence:ifk≤kandkp,thenkp.WecalltheforcingrelationofK.Weusee.g.PKforthesetofpropositionalvariablesofK,KfortheforcingrelationofK,etcetera.AmodelKisaP-modelifPK=P.
16
ConsiderK=K,≤,,P.WedefinekAforA∈L(P)inthestandardway.KAif,forallk∈K,wehavekA.
AmodelKisfiniteifbothKKandPKarefinite.ArootedmodelKisastructureK,b,≤,,P,whereK,≤,,Pisamodelandwhereb∈Kisthebottomelementw.r.t.≤.
Foranyk∈K,wedefineK[k]asthemodelK,k,≤,,P,whereK:=↑k:={k|k≤k}andwhere≤andaretherestrictionsof≤respectivelytoK.(Wewilloftensimplywrite≤andfor≤and.)
5.2TheHenkinConstruction
AsetX⊆L(P)isadequateifitisnon-emptyandclosedundersubformulas(and,hence,contains⊥).AsetΓisX-saturatedif:1.Γ⊆X,2.Γ⊥,
3.IfΓAandA∈X,thenA∈Γ,4.IfΓ(B
∨
C)and(B
∨
C)∈X,thenB∈ΓorC∈Γ.
LetXbeadequate.TheHenkinmodelHX(P)istheP-modelwithasnodestheX-saturatedsets∆andasaccessibilyrelation⊆.Theatomicforcinginthenodesisgivenby:Γp⇔p∈Γ.Wehave,byastandardargument,thatΓA⇔A∈Γ,foranyA∈X.NotethatifXandParefinite,thenHX(P)isfinite.AdirectconsequenceoftheHenkinconstructionistheKripkeCompletenessTheorem.Letp⊇pv(A),then:
IPCA⇔KA,forall(finite)p-modelsK.
5.3MoreDefinitions
LetKbeasetofP-models.MKistheP-modelwithnodesk,Kfork∈KK,K∈Kandwithorderingk,K≤m,M:⇔K=Mandk≤Km.Asatomicforcingwedefine:k,Kp:⇔kKp.Inpracticewewillforgetthesecondcomponentsofthenewnodes,pretendingthedomainstobealreadydisjoint.LetKbeaP-model.BKistherootedP-modelobtainedbyaddinganewbottombtoKandbytakingbp:⇔Kp.Weputglue(K):=BMK.
5.4ThePushDownLemma
WewillassumebelowthatPisfixed.Wewilloftennotationallysuppressit.Theorem5.1(PushDownLemma)LetXbeadequate.Suppose∆isX-saturatedandK∆.Thenglue(HX[∆],K)∆.
17
Proof
WeshowbyinductiononA∈XthatbA⇔A∈∆.Thecasesofatoms,conjunctionanddisjunctionaretrivial.If(B→C)∈Xandb(B→C),then∆(B→C)and,hence,(B→C)∈∆.Conversely,suppose(B→C)∈∆.IfbB,weareeasilydone.IfbB,then,bytheInductionHypothesis,B∈∆,henceC∈∆and,againbytheInductionHypothesis:bC.PWesaythat∆is(P-)primeifitisconsistentandif,forevery(C∨D)∈L(P),∆(C∨D)⇒∆Cor∆D.AformulaAisprimeif{A}isprime.Theorem5.2SupposeXisadequateand∆isX-saturated.Then∆isprime.
Proof
∆isconsistentbydefinition.Suppose∆C∨Dand∆Cand∆D.Sup-posefurtherK∆,KC,M∆andMD.Considerglue(HX(∆),K,M).Bytheorem5.1wehave:b∆.Ontheotherhand,bypersistence,bCandbD.Contradiction.P∼CexhibitednexttoanodemeansthatCisnotforced;thisisnottobeconfusedwith¬Cexhibitednexttoanode,whichmeansthat¬Cisforced.
18
Theorem5.3ConsideranyformulaA.TheformulaAcanbewritten(moduloIPC-provableequivalence)asadisjunctionofprimeformulasC.MoreovertheseCareconjunctionsofimplicationsandpropositionalvariablesinsub(A).
Proof
Considerasub(A)-saturated∆.Letthesetofimplicationsandatomsip(∆)be
of∆.ItiseasilyseenthatIPCip(∆)↔∆.Take:
D:={ip(∆)|∆issub(A)-saturatedandA∈∆}.Trivially:IPCD→A.OntheotherhandifIPCA→D,thenbyastandardconstructionthereisasub(A)-saturatedsetΓsuchthatA∈ΓandΓD.Quodnon.PRemark5.4NotethatinthedefinitionofDin5.3,wecanrestrictourselvestothe⊆-minimalsub(A)-saturated∆withA∈∆.
6RobustFormulas
Inthissectionwestudyrobustformulas.Wewillverifythat£IPC,ROBisaσ-relation,andthusthatσ⊆£IPC,ROB.
Weaimatapplicationoflemma4.3toσintheroleof£,andROBintheroleofX.ThemappingΨneededfortheapplicationoflemma4.3,willbethemapping(·)∗providedinsection7.
ConsiderP-modelsKandM.Wesaythat:•K⊆M:⇔∃f:KK→KM(fisinjectiveandf◦≤K⊆≤M◦f
and∀k∈KK,p∈P(kKp⇔f(k)Mp)).
ModulotheidentificationoftheelementsofKwiththeirf-imagesinM,clearly‘K⊆M’meansthatKisasubmodelofM.ROBistheclassofformulasthatispreservedundersubmodels.
Asubmodelisfulliftheneworderingrelationistherestrictionoftheoldorderingrelationtothenewworlds.Wedonotdemandofoursubmodelsthattheyarefull.However,allorresultsworkforfullsubmodelstoo.•A∈ROB:⇔Aisrobust:⇔∀M(MA⇒∀K⊆MKA).
Wewillletσ,σ,τ,...rangeoverROB.ItiseasytoseethatNNIL⊆ROB.Insection7wewillseethatmoduloIPC-provableequivalenceeachrobustformulaisinNNIL.
Let’stakeasalocalconventionofthissectionthat£:=£IPC,ROB.ClearlywehavethatP⊆ROBandthatROBisclosedunderconjunction.Soitfollowsthat£satisfiesA1,A2,A3,B3.ToverifyB1,bylemma4.2(2),thefollowingtheoremsuffices.
Theorem6.1ROBisweaklydisjunctive.
19
Proof
ConsideranyA∈ROB.WewriteAindisjunctivenormalformDAasintheorem5.3andremark5.4.ConsideranydisjunctC(∆)ofDA.Here,asin5.4,∆isa⊆-minimalsub(A)-saturatedsetwithA∈∆andC(∆)istheconjunctionoftheatomsandimplicationsin∆.WeclaimthatC(∆)isrobust.ConsideranymodelsK⊆MC(∆).Trivially,M∆.BythePushDownLemma5.1,glue(Hsub(A)[∆],M)∆.Hence,glue(Hsub(A)[∆],M)A.Nowclearly,
glue(Hsub(A)(∆),K)⊆glue(Hsub(A)(∆),M).BythestabilityofAwegetglue(Hsub(A)(∆),K)A.Consider
Γ:={G∈sub(A)|glue(Hsub(A)(∆),K)G}.
ClearlyΓ⊆∆.Moreover,Γissub(A)-saturatedandA∈Γ.Bythe⊆-minimalityof∆wefindΓ=∆.Hence,glue(Hsub(A)(∆),K)C(∆)andsoKC(∆).ErgoC(∆)isrobust.PTheorem6.2£isclosedunderB2.
Proof
LetXbeafinitesetofimplicationsandletY:={C|(C→D)∈X}∪{B}.LetA:=X.Wehavetoshow:(A→B)£[A]Y.Theproofisbycontraposition.ConsideranyH∈ROBandsuppose:H[A]Y.LetK=K,b,≤,,PbearootedmodelsuchthatKHandK[A]Y,i.e.forallE∈Y,wehaveK[A]E.
LetK:=K{A}:=K,b,≤,,P,bethefullsubmodelofKonK:={b}∪{k∈K|kA}.Notethat{k∈K|kA}isupwardsclosedandthaton{k∈K|kA}theoldandthenewforcingcoincide.Moreover,onthisclass,foranyG,wehavethat[A]GisequivalentwithG.
20
Weclaimthat,forallF,bF⇒b[A]F.TheproofoftheclaimisbyasimpleinductiononF.Thecasesofatoms,disjunctionandconjunctionaretrivial.SupposeFisanimplicationandbF.Thencertainly,forallk∈K,(kA⇒kF).SinceonthekwithkA,andcoincide,wefindb(A→F),i.e.b[A]F.
Wereturntothemainproof.Rememberthat:bHandb[A]C,forallCwith(C→D)∈Xandb[A]B.WeshowthatbHandbAandbB.
ItisimmediatethatbH,sinceKisasubmodelofKandHisrobust.RememberthatAistheconjunctionofthe(C→D)inX.Soitissufficienttoshowthat,foreach(C→D)inX,b(C→D).Considerany(C→D)∈Xandanyk≥bwithkC.Sinceb[A]C,wehave,bytheclaim,bC.Sok=b.ButthenkA,hencekAand,thus,k(C→D).WemayconcludethatkDand,hence,b(C→D).
Fromb[A]Bandtheclaimwehaveimmediatelythat:bB.PAlltheproofsinthissectionalsoworkwhenwereplaceROBbyf-ROB,thesetofformulaspreservedbyfullsubmodels.NotethatROB⊆f-ROB.Ourresultinsection7willimply:ROB=f-ROB=NNIL(moduloIPC-provableequivalence).
7TheNNIL-Algorithm
Inthissectionweproducethealgorithmthatisthemaintoolofthispaper.Theexistenceofthealgorithmestablishesthefollowingtheorem.
Theorem7.1ForallAthereisanA∗∈NNIL(pv(A))suchthatAσA∗andA∗A.
Beforeproceedingwiththeproofof7.1weinterpolateacorollary.Corollary7.2
1.LetAandA∗beaspromisedby7.1.Thenwehave
AσB⇔A£IPC,ROBB⇔A∗IPCB.
2.NNIL=ROB=f-ROB(modIPC)
21
Proof
Itisimmediatefromthefactthatboth£IPC,ROBand£IPC,f-ROBareσ-relationsthatσ⊆£IPC,ROBandσ⊆£IPC,f-ROB.Moreoverwehaverange((·)∗)⊆NNIL⊆ROB⊆f-ROB.Combiningthiswiththeresultoftheorem7.1,wecanapplylemma4.3toobtainthedesiredresults.P7.2(2)wasprovedbypurelymodeltheoreticalmeansbyJohanvanBenthem.Seehis[vB95]or,alternatively,[VvBdJdL95].TheadvantageofvanBenthem’sproofisitsrelativesimplicityandthefactthatthemethodemployedeasilygeneralizes.Theadvantageofthepresentmethodistheextrainformationitproduces,liketheaxiomatizationof£IPC,ROBanditsusefulnessinthearith-meticalcase,seesections9,10,11and12.ItisanopenquestionwhethervanBenthem’sproofcanbeadaptedtothearithmeticalcase.
Remark7.3Combiningcorollary7.2withtheresultsof[VvBdJdL95],weob-tainthefollowingsemanticalcharacterizationofσ.
AσB⇔∀M(∀K⊆MKA⇒MB).
Weproceedwiththeproofoftheorem7.1.Fortherestofthissectionwewrite£:=σ.Forconveniencewereproducetheaxiomsandrulesof£here.A1A2A3B1B2
AB⇒A£B
A£BandB£C⇒A£CC£AandC£B⇒C£(A∧B)A£CandB£C⇒(A∨B)£C
LetXbeafinitesetofimplicationsandlet
Y:={C|(C→D)∈X}∪{B}.
TakeA:=B3
X.Then,(A→B)£[A]Y
A£B⇒(p→A)£(p→B)
Proofoftheorem7.1
Weintroduceanordinalmeasureoofcomplexityonformulasasfollows:•I(D):={E∈sub(D)|Eisanimplication}•iD:=max{|I(E)||E∈I(D)}(Here|Z|isthecardinalityofZ)
•cD:=thenumberofoccurrencesoflogicalconnectivesinD
22
•oD:=ω·iD+cD
Notethatwecountoccurrencesofconnectivesforcandtypesofimplications,notoccurrences,fori.WesaythatanoccurenceofEinDisanouteroccurrenceifthisoccurrenceisnotinthescopeofanimplication.
Theproofoftheorem7.1proceedsasfollows.Ateverystagewehaveaformulaandassociatedwithitcertaindesignatedsubformulas,thatstillhavetobesimplified.Astepoperatesononeofthesesubformulas,sayA.EitherAwillloseitsdesignationandanumberofitssubformulaswillgetdesignatedorAwillbemodified,saytoA,andanumberofsubformulasofAwillreplaceAamongthedesignatedformulas.ThesubformulasBreplacingAamongthedesignatedformulaswillsatisfy:oB strictlysmallerones.Thismeansthatwearedoingarecursionoverωω. Wewillexhibitthepropertiesof£thatareusedineachstepbetweensquarebrackets. αAtoms:[A1]SupposeAisanatom.TakeA∗:=A. βConjunction:[A1,A2,A3]:SupposeA=(B∧C).ClearlyoB δ1Outerconjunctionintheconsequent:[A1,A2,A3]SupposeChasanouterocurrenceofaformulaD∧E.PickanyJ(q)besuchthat:•qisafreshvariable,•qoccurspreciselyonceinJ, •qisnotinthescopeofanimplicationinJ,•C=J[q:=(D ∧ E)]. LetC1:=J[q:=D],C2:=J[q:=E].AsiseasilyseenCisIPC-provablyequivalenttoC1∧C2.LetA1:=(B→C1)andA2:=(B→C2).ClearlyAisIPC-provablyequivalenttoA1∧A2.WeprovethatoAi ConsideranyimplicationFinI(A1).IfF=A1,wemapFtoA.OtherwiseF∈I(B)orF∈I(J)orF∈I(D)(sinceqdoesnotoccurinthescopeofanimplication).InallthreecaseswecanmapFtoitself.SinceA1cannotbeinI(B)orI(J)orI(D),ourmappingisinjective.Thecasethati=2issimilar. ∗ SetA∗:=(A∗1∧A2).δ2Outerdisjunctionintheantecedent:[A1,A2,A3]Thiscaseiscompletelyanalogoustothepreviousone. IfAhasnoouterdisjunctionintheantecedentandnoouterconjunctionintheconsequent,thenBisaconjunctionofatomsandimplicationsandCisadisjunctionofatomsandimplications.Itiseasytosee,thatapplicationsofasso-ciativity,commutativityandidempotencytotheconjunctionintheantecedentortothedisjunctionintheconsequentdonotraiseo.Sowecansafelywrite:B=XandC=Y,whereXandYarefinitesetsofatomsorimplications.Thisleadsustothefollowingcase. δ3Bisaconjunctionofatomsandimplications,Cisadisjunctionofatomsandimplications[A1,A2,A3,B2,B3]δ3.1Xcontainsanatom:[A1,A2,B3] δ3.1.1Xcontainsapropositionalvariable,sayp:[A1,A2,B3]ConsiderD:=(X\\{p})andE:=(D→C).ClearlyA↔(p→E)andoE Example7.4Consider(p→q)→r.B2givesus((p→q)→r)£(p∨r).However,wedonothave:(p∨r)((p→q)→r).Wecanrepairthisbynotingthat((p→q)→r)(q→r)and(q→r)∧(p∨r)((p→q)→r).Sothefullsolutionofourexampleisasfollows. Wehave((p→q)→r)£((q→r)∧(p∨r)),by: a)((p→q)→r)£(p∨r)b)((p→q)→r)(q→r)c)((p→q)→r)£(q→r) d)((p→q)→r)£((q→r)∧(p∨r)) 24 B2IPCA1a,c,A3 Moreover,((q→r)∧(p∨r))((p→q)→r)and ((q→r)∧(p∨r))∈NNIL(pv((p→q)→r)). Weimplementthisideaforthegeneralcase.Therewillbeaproblemwitho,butwewillpostponeitsdiscussionuntilwerunintoit.AisoftheformB→C,whereBisaconjunctionofafinitesetofimplicationsXandCisadisjunctionofafinitesetofatomsorimplicationsY.ForanyD:=(E→F)∈X,let: B↓D:=((X\\{D})∪{F}).Clearlyo((B↓D)→C) A£A0B2 ∗ A0£A0assumption ∗ A£A01,2,A2∀D∈XA((B↓D)→C)IPC∀D∈XA£((B↓D)→C)4,A1 ∗ ∀D∈X((B↓D)→C)£((B↓D)→C)IH ∗ ∀D∈X5,6,A2A£((B↓D)→∗C)∗ A£({((B↓D)→C)|D∈X}∧A0)3,7,A3 Itisclearthat({((B↓D)→C)∗|D∈X}∧A∗0)∈NNIL(pv(A)).Weshowthat: {((B↓D)→C)∗|D∈X}∧A∗0A. Itissufficienttoshow:{((B↓D)→C)|D∈X}∧[B]EA,foreachE∈Z.IncaseE=C,weareimmediatelydoneby:[B]CB→C.Suppose(E→F)∈XforsomeF.ReasoninIPC.Suppose{((B↓D)→C)|D∈X},[B]EandB.WewanttoderiveC.Wehave(((X\\{E→F})∧F)→C),[B]EandB.FromBwefind(X\\{E→F})and(E→F).FromBand[B]E,wederiveE.FromEand(E→F)wegetF.Finallyweinferfrom(((X\\{E→F})∧F)→C),(X\\{E→F})andFthedesiredconclusionC.HereendsourdiscussioninsideIPC. SotheonlythinglefttodoistoshowthatA∗0exists.IfiA0=0,weareeasilydone.SupposeiA0>0.IfforeachEinZwithiE>0,wewouldhavei([B]E) andhasiR 1) 2)3)4)5)6)7)8) Example7.5Consider(p→q)→(r→s).TakeE:=C=(r→s).Wehave[B]E=[p→q](r→s)=(p→q)→(r→s).Sonosimplificationisobtained.However[B]EisIPC-provablyequivalentto((r∧(p→q))→s),whichhasloweri.ByA1,A2wecanput([B]E)∗:=((r∧(p→q))→s)∗.Wecouldhaveappliedthereductionbeforegoingto[B]E.Wedidnotchoosetodosoforreasonsofuniformityoftreatment. Example7.6Consider(((p→q)→r)→s).TakeE:=(p→q).Wefind[B]E=[(p→q)→r](p→q)=(((p→q)→r)→(p→q)).[B]EisIPC-provablyequivalentto((p∧(q→r))→q),whichhasloweri. Consider[B]EforE∈Z={E|(E→F)∈X}∪{C}.[B]Eistheresultofreplacingouterimplications(G→H)ofEby(B→(G→H)).IfthereisnoouterimplicationinE,wefindthat[B]E=Eandi([B]E)=0.Inthiscase[B]EisimplicationfreeandhenceafortioriinNNIL.Wecanput([B]E)∗:=E.SupposeEhasanouterimplication. Consideranyouterimplication(G→H)ofE.Wefirstshow:i(B→(G→H))≤i(B→C).WedefineaninjectionfromI(B→(G→H))toI(B→C).AnyimplicationoccurringinI(B)orI(G→H)canbemappedtoitselfinI(B→C).Noneoftheseimplicationshasasimage(B→C),since(G→H)∈I(B)∪I(C).Sowecansend(B→(G→H))to(B→C). Thenextstepistoreplace(B→(G→H))byanIPC-provablyequivalentformulaKwithlowervalueofi.LetBbetheresultofreplacingalloccurrencesof(G→H)inBbyHandletK:=((G∧B)→H).ClearlyKisprovablyequivalentto(B→(G→H)).Weshowthati(K)Wedefineanon-surjectiveinjectionfromI(K)toI(B→(G→H)).Con-sideranimplicationMinI(K).IfM=Kwesenditto(B→(G→H)).SupposeM=K,i.e.M∈I(B)∪I(G)∪I(H).AsubformulaNofI(B)∪I(G)∪I(H)isapredecessorofMifMistheresultofreplacingalloccurrencesof(G→H)inNbyH.ClearlyMhasatleastonepredecessorandanypredecessorofMmustbeanimplication.SendMtooneofitsshortestpredecessors.Clearlyourfunctionisinjective,sincetwodifferentimplicationscannotshareapredecessor.Finally(G→H)cannotbeintherangeofourinjection.Ifitwere,wewouldhaveM=H,butthenHwouldbeashorterpredecessor.Acontradiction. Replaceeveryouterimplicationin[B]Ebyanequivalentwithlowervalueofi.TheresultisthedesiredQ. Remark7.7Thealgorithmgivenwithourproofisnon-deterministicallyspec-ified.Howeverbycorollary7.2theresultisuniquemoduloprovableequivalence.Ididn’ttrytomakethealgorithmoptimallyefficient. In[Vis85]asimpleadaptationoftheNNILalgorithmisgivenfor£IPC,.HerethealgorithmcomputesnotavalueinNNIL,butavaluein{,⊥}.Thusweobtainanalgorithmthatchecksforprovability.Itiseasytousethepresentalgorithmforthispurposetoo,sincethereisap-timealgorithmtodecideIPC-provabilityofNNIL0formulas,i.e.formulaswithonlypropositionalvariables 26 infrontofarrows.TheoutputsofouralgorithmareinNNIL0.IthasbeenshownbyRichardStatman(see[Sta79])thatcheckingwhetheraformulaisIPC-provableisp-spacecomplete.Thisputsanabsoluteboundonwhatanalgorithmlikeourscando. Example7.8[Samplecomputations]Weusesomeobviousshort-cuts. (¬¬p→p)→(p∨¬p) (p→(p∨¬p))∧([¬¬p→p]¬¬p∨[¬¬p→p]p∨[¬¬p→p]¬p)¬¬p∨p∨¬p ((⊥→p)∧([¬p]p∨[¬p]⊥))∨p∨¬pp∨¬p ((p→q)→r)→s (r→s)∧([(p→q)→r](p→q)∨[(p→q)→r]s)(r→s)∧(((p∧(q→r))→q)∨s)(r→s)∧((p→((q→r)→q))∨s) (r→s)∧((p→((r→q)∧([q→r]q∨[q→r]q)))∨s)(r→s)∧((p→q)∨s). ≡≡≡≡ ≡≡≡≡≡ 8 8.1 BasicFactsandNotationsinArithmetic ArithmeticalTheories ThearithmeticaltheoriesTconsideredinthispaperareREtheoriesinA,thelanguageofHA.Thesetheoriesallextendi-S12,theintuitionisticversionofBuss’theoryS12.Anothersalienttheoryisintuitionisticelementaryarithmetic,i-EA:=i-I∆0+Exp,theconstructivetheoryof∆0-inductionwiththeaxiomexpressingthattheexponentiationfunctionistotal.i-EAisfinitelyaxiomatiz-able;westipulatethatafixedfiniteaxiomatizationisemployed.WewillusePTfortheformalizationofprovabilityinT.Inthepresentpaper,wearemostlyinterestedinextensionsofHA,sowewilnotworrytoomuchaboutdetailsconcerningweaktheories. SupposeAisaformula.PTAmeansProvT(t(x)),whereProvTisthearith-metizationoftheprovabilitypredicateofTandwherexisthesequenceofvariablesoccuringinAandt(x)istheterm‘theG¨odelnumberoftheresultofsubstitutingtheG¨odelnumbersofthenumeralsofthex’sforthevariablesinA’.Supposee.g.that11,12and15code,respectively,‘(’,‘)’and‘=’,that∗isthearithmetizationofthesyntacticaloperationofconcatenationandthatnumisthearithmetizationofthenumeralfunction.Underthesestipulationse.g.PT(x=x)means:ProvT(11∗num(x)∗15∗num(x)∗12).6 notationalconventionintroducesascopeambiguity.Fortunatelybystandardmeta-mathematicalresults,weknowthataslongasthetermsweemploystandforT-provablytotalrecursivefunctionsthedifferentreadingsareprovablyequivalent.Inthispaperwewillonlyemploytermsforp-timecomputablefunctions,sotheambiguityisharmless. 6Our 27 SupposeTextendsi-EA.WewriteTnforthetheoryaxiomatizedbythefinitelymanyaxiomsofi-EA,plustheaxiomsofTwhicharesmallerthanninthestandardG¨odelnumbering.WewriteProvT,nfortheformalizationofprovabilityinTn.WeconsiderProvT,nasaformofrestrictedprovabilityinT.Thefollowingwellknownfactisquiteimportant: Theorem8.1SupposeTisanREextensionofHAinthelanguageofHA.ThenTisessentiallyreflexive(verifiablyinHA).I.e.forallnand,forallA-formulasAwithfreevariablesx,T∀x(PT,nA→A).And,usingUCfor‘theuniversalclosureof’,evenHA∀x∀A∈FORAPTUC(PT,xA→A). Proof (Sketch)Theproofisroughlyasfollows.Ordinarycut-eliminationforcon-structivepredicatelogic(ornormalizationincasewehaveanaturaldeductionsystem)canbeformalizedinHA.ReasoninHA.Letanumberxandafor-mulaAbegiven.Introduceameasureofcomplexityonarithmeticalformulasthatcountsboththedepthofquantifiersandofimplications.FindysuchthatboththeaxiomsofTxandAhavecomplexity InthissubsectionwedescribethetheoryHA∗.Thistheorywillbeemployedintheproofoftheorem10.2.Insection12wewillstudytheclosedfragmentofHA∗. ThetheoryHA∗wasintroducedin[Vis82].HA∗istoBeeson’sfp-realizability,introducedin[Bee75],asTroelstra’sHA+ECT0istoKleene’sr-realizability.Thismeansthatforasuitablevariantoffp-realizabilityHA∗isthesetofsen-tencessuchthattheirfp-translationsareprovableinHA.ThetheoryHA∗isHAplustheCompletenessPrincipleforHA∗.TheCompletenessPrinciplecanbeviewedasanarithmeticallyinterpretedmodalprinciple.TheCompletenessPrincipleviewedmodallyis:CC[T] A→PAA→PTA. TheCompletenessPrincipleforaspecifictheoryTis: WehaveHA∗=HA+C[HA∗].7Webrieflyreviewsomeoftheresultsof[Vis82]and[dJV96]. naturalwaytodefineHA∗isbyafixedpointconstructionas:HAplustheComplete-nessPrincipleforHA∗.HereitisessentialthattheconstructionisverifiableinHA. 7The 28 •LetAbethesmallestclassclosedunderatomsandallconnectivesexceptimplication,satisfying:A∈Σ1andB∈A⇒(A→B)∈A.NotethatmoduloprovableequivalenceinHAallprenexformulas(oftheclassicalarithmeticalhierarchy)areinA.HA∗isconservativew.r.t.AoverHA.NotethatNNIL0(Σ)⊆A.•ThereareinfinitelymanyincomparableTwithT=HA+C[T].HoweverifT=HA+C[T]verifiablyinHA,thenT=HA∗.•LetKLS:=Kreisel-Lacombe-Shoenfield’sTheoremonthecontinuityoftheeffectiveoperations.WehaveHA∗KLS→PHA∗⊥.ThisimmediatelygivesBeeson’sresultthatHAKLS[Bee75]. •EveryprimeREHeytingalgebraHcanbeembeddedintotheHeytingalgebraofHA∗.ThismappingisprimitiverecursiveintheenumerationofthegeneratorsofHw.r.twhichHisRE.Themappingsendsthegen-eratorstoΣ-sentences[dJV96].WeinsertsomebasicfactsontheprovabilitylogicofHA∗.Thesematerialswillbeonlyneededinsection12.Clearly,HA∗satisfiestheL¨obconditions.L1L2L3L4 A⇒PA P(A→B)→(PA→PB)PA→PPAP(PA→A)→PA i-KisgivenbyIPC+L1,L2.i-Lisi-K+L3,L4.Wewritei-K{P}fortheexten-sionofi-KwithsomeprincipleP.Notethati-L{C}isvalidforprovabilityinterpretationsinHA∗. AprinciplecloselyconnectedtoCistheStrongL¨obPrinciple:SL (PA→A)→A AsaspecialcaseofSLwehave¬¬P⊥. Theorem8.2i-L{C}isinterderivablewithi-K{SL}. Proof L4isimmediatefromSL.Weshow“i-K{SL}C”.Reasonini-K{SL}.SupposeA.IteasilyfollowsthatP(A∧PA)→(A∧PA),and,hence,bySL,thatA∧PA.WemayconcludethatPA. Weshow“i-L{C}SL”.Reasonini-L{C}.Suppose(PA→A).Itfollows,byC,that:(PA→A)∧P(PA→A).Hence,byL¨ob’sPrinciple,(PA→A)∧PAandthusA.P29 9ClosurePropertiesofΣ-Preservativity InthissectionweverifytwoclosurepropertiesofΣ-preservativityoverHAinHA. 9.1ClosureunderB1 WewillshowthatHAverifiesthatΣ-preservativityisclosedunderB1foranysubstitutions.Weproducebothproofsknowntous.Thefirstoneemploysq-realizability.ThisformofrealizabilityisatranslationfromAtoA,duetoKleene.Itisdefinedasfollows:•xqP:=P,forPatomic •xq(A∧B):=((x)0qA∧(x)1qB)•xq(A∨B):=(((x)0=0→(x)1qA)•xq∃yA(y):=(x)0qA((x)1)•xq∀yA(y):=∀y∃z({x}yz1.HAxqA→A 2.foranyA∈Σandanyset{y1,...,yn}withFV(A)⊆y1,...,yn,wecanfindanindexesuchthatHAA→∃z({e}(y1,...,yn)z∧zqA)3.SupposeB1,...,Bn,Chavefreevariablesamong{y1,...,ym}andthat{x1,...,xn}isdisjointfrom{y1,...,ym}.SupposeB1,...,BnHAC.Then,forsomee,wehave: x1qB1,···,xnqBnHA∃z({e}(x1,...,xn,y1,...,ym)z ∧ ∧ ∧ ((x)0=0→(x)1qB)) ∧ •xq(A→B):=∀y(yqA→∃z({x}yzzqB))∧(A→B) zqA(y))) ThefollowingfactscanbeverifiedinHA. zqC). Theproofsareallsimpleinductions.Fordetailsthereaderisreferredto[Tro73],188–202.WewillnowshowthatΣ-preservativitysatisfiesB1.ItiseasilyseenthatourproofisverifiableinHA.Wereasonasfollows: α)β)γ)δ))η)ζ)θ)ι)κ)λ) A£HA,ΣCB£HA,ΣC S∈ΣandHAS→(A∨B) xqSHA∃z({e}(x)z∧zq(A∨B))SHA∃z({e}(f)z∧zq(A∨B))S∧∃z({e}(f)z∧(z)0=0)HAAS∧∃z({e}(f)z∧(z)0=0)HABS∧∃z({e}(f)z∧(z)0=0)HACS∧∃z({e}(f)z∧(z)0=0)HACSHA∃z({e}(f)z∧(z)0=0)∨ ∃z({e}(f)z∧(z)0=0) SHAC 30 assumptionassumptionassumption γ,eprovidedby(3)δ,fprovidedby(2)η,αζ,βθ,ι,κ ThesecondproofemploysatranslationduetoDickdeJongh.Forlateruseourdefinitionisslightlymoregeneralthanisreallyneededfortheproblemathand.LetCbeanA-sentenceandletnbeanaturalnumber.Wewrite,locally,PnforPHA,n.Defineatranslation[C]n(·)asfollows.•[C]nP:=PforPatomic•[C]n(·)commuteswith∧,∨,∃•[C]n(A→B):=([C]nA→[C]nB) ∧ Pn(C→(A→B)) •[C]n∀yA(y):=∀y[C]nA(y)∧Pn(C→∀yA(y)) Let’sfirstmakeafewquickobservations,thatmakelifeeasier.Wewrite[C]nΓ:={[C]nD|D∈Γ}.Wehave:‡i)HA[C]nA→Pn(C→A) ‡ii)HA[C]n((A→B)∧(A→B))↔ ([C]nA→[C]nB)∧([C]nA→[C]nB)∧Pn(C→((A→B)∧(A→B))). Similarlyforconjunctionsofmorethantwoimplications. ‡iii)HA[C]n∀y∀zA(y,z)↔(∀y∀z[C]nA(y,z)∧Pn(C→∀y∀zA(y,z))). Similaryforlargerblocksofuniversalquantifiers.‡iv)HA[C]n∀y(A(y)→B(y))↔ ∀y([C]nA(y)→[C]nB(y))∧Pn(C→∀y(A(y)→B(y))).‡v)HA[C]n∀y HA∀y Proofof(‡vii)TheproofisbyinductionontheproofwitnessingΓHA,nA.Wetreattwocases. FirstcaseΓ=∅andAisaninductionaxiom,sayforB(x),ofHAn.Clearly[C]nAisHA-provablyequivalentto: (( [C]nB0∧ ∀x([C]nBx→[C]nB(x+1))∧ Pn(C→∀x(Bx→B(x+1))))→(∀x[C]nBx∧Pn(C→∀xBx)))∧ Pn(C→A). 31 Wehave:HAPnA,and,hence,HAPn(C→A).Soitfollowsthat: HAPn(C→∀x(Bx→B(x+1)))→Pn(C→∀xBx). Moreover(asaninstanceofinductionfor[C]nBx): HA([C]nB0∧∀x([C]nBx→[C]nB(x+1)))→∀x[C]nBx. Combiningthesewefindthepromised:HA[C]nA. SecondcaseSupposethatA=(D→E)andthatthelaststepintheproofwasby: Γ,DHA,nE⇒ΓHA,nD→E.FromΓ,DHA,nE,wehave,bytheInductionHypothesis,[C]nΓ,[C]nDHA,n[C]nEand,hence,[C]nΓHA,n[C]nD→[C]nE.Moreover,forsomefiniteΓ0⊆Γ,wehaveΓ0,DHA,nE.LetBbetheconjunctionoftheelementsofΓ0.Wefind:[C]nΓHA,nPn(C→B)andHA,nPn(B→(D→E)).Hence,[C]nΓHA,nPn(C→(D→E)).Wemayconclude: [C]nΓHA,n([C]nD→[C]nE) ∧ Pn(C→(D→E)). argumentcanbeverifiedinassumptionassumptionassumptionγ δ,(‡vii),(‡vi),(‡i)theorem8.1α,ζ theorem8.1β,ιη,θ,κ Hereendsourproofof(‡vii). Wenowproveourprinciple.AsiseasilyseentheHA. α)A£HA,ΣCβ)B£HA,ΣC γ)S∈ΣandHAS→(A∨B)δ)forsomenSHA,n(A∨B))[]nSHA([]nA∨[]nB)η)SHA(PnA∨PnB)ζ)HAPnA→Aθ)HAPnA→Cι)HAPnB→Bκ)HAPnB→Cλ)HA(S→C) 9.2AClosureRuleforImplication ToformulateournextclosureruleitisconvenienttoworkinaconservativeextensionofHA.LetA+beAextendedwithnewpredicatesymbols(includingthe0-arycase)forΣ-formulas.LetfbesomeassignmentofΣ-formulasofAoftheappropriatearitiestothenewpredicatesymbols.WeextendftoA+intheobviousway.Define[·]◦[·]](·):A+→Aasfollows:n(·)and[•[[A]]P:=[A]◦nP:=fPforPatomic•[[A]](·)and[A]◦n(·)commutewith∧, 32 ∨ and∃ •[[A]](B→C):=f(A→(B→C)),[A]◦n(B→C):=Pnf(A→(B→C))•[[A]]∀xB(x):=f(A→∀xB(x)),[A]◦n∀xB(x):=Pnf(A→∀xB(x)) Wehave,forBinA+,extendingthenumberingof‡-principlesofsubsection9.1: ‡viii)ThefollowingimplicationsarederivableinHA:[fA]n(fB)→[A]◦nB, ◦ [A]nB→[[A]]Band[[A]]B→(A→B).‡ix)[A]◦nBisprovablyequivalenttoaΣ-formula. Theproofof(‡viii)isaneasyinductiononB.(‡ix)istrivial. Theorem9.1SupposeXisafinitesetofimplicationsinA+andletBbein Y:={C|(C→D)∈X}∪{B}.Wehave,verifiablyA+.SayA:=X.Let inHA,f(A→B)£HA,Σ[[A]]Y. Beforegivingtheproofoftheorem9.1,wefirstdrawacorollary.Corollary9.2ThefollowingfactsareverifiableinHA.1.£HA,Σ,ΣisclosedunderB2.2.£HA,Σ,AisclosedunderB2. 3.Σ8ofappendixCisHA-validforΣ-preservativity. Weleavetheeasyverificationofthecorollarytothereader.Weproceedwiththeproofoftheorem9.1. Proof Toavoidheavynotationswesuppress‘f’.InthecontextofHAweassumethatanA+-formulaisautomaticallytranslatedviaftothecorrespondingA-formula.LetSbeaΣ-sentence(ofA).SupposeSHA(A→B).Itfollowsthat,forsomen,SHA,n(A→B)and,hence,by(‡vii)[A]nSHA[A]n(A→B).By(‡ii)and(‡vi)wefind: SHA({[A]nC→[A]nD|(C→D)∈X}∧Pn(A→A))→[A]nB,andso: SHA {[A]nC→[A]nD|(C→D)∈X}→[A]nB. Itfollowsby(‡viii)that: ◦ SHA{[A]◦nC→[A]nD|(C→D)∈X}→[A]nB. 33 SinceHAisasubtheoryofPA,weget: ◦ SPA{[A]◦nC→[A]nD|(C→D)∈X}→[A]nB. Byclassicallogic,wegetSPA[A]◦nY.RememberthatPAis,verifiably◦inHA,conservativeoverHA◦w.r.tΠ2-sentences(see[Fri78]).Since(S→[A]nY)isΠ2,wegetSHA[A]nY.Ergo,by(‡viii),SHA[[A]]Y.PBeforeclosingthissectionweinsertsomeremarksontheproof. Remark9.31.Theaboveproofwasobtainedafteranalyzinganargument in[dJ82].2.ThestepinvolvingconservativityofPAoverHAusestheG¨odel-Friedmantranslation.Closerinspectionrevealsthattheargumentathandjustre-quirestheFriedmantranslation.Wegiveasketchoftheproofbelow.ItfollowsthatourresultsgeneralizetoallessentiallyreflexiveREexten-sionsTofHAthatareclosedbothundertheFriedmanandthedeJonghtranslation.3.Itseemstomethat,fromasufficientlyabstractperspective,itshouldbecomeclearthatourpresentproofisjustavariantoftheproofof6.2.Thus,{G|Pn(A→G)}inthepresentproofwouldcorrespondtothegreypartoftheKripkemodelinthepicturebelow6.2.[A]n(·)wouldcorrespondtotheoperationofaddingthebottom-nodeinthepicture(viaSmory´nski’soperation)tothegreypart.ThedetourviaPAwouldcorre-spondtothefactthatourKripkemodelargumentisessentiallyclassical.ThespecialbehaviourofΣ-sentencesundertranslationwouldcorrespondwiththefactthatwhetheraΣ-sentenceisforcedornot(inamodelofHA)isdependentjustonthenodeunderconsiderationandnotonothernodes.Letmeposeitasaproblemtofurtherdevelopsuchaperspective.Weprovetheclaimof(2):weshowthatthedoublenegationtranslationcanbeeliminatedfromtheproofof9.1.Wepickuptheprooffromthepointwherewehaveproved: ◦ a)SHA{[A]◦nC→[A]nD|(C→D)∈X}→[A]nB. H LetH:=[A]◦ofanarithmeticalformulanY.TheFriedmantranslation(E) Eis(modulosomedetailstoavoidvariable-clashes)theresultofreplacingallatomicformulasPinEby(P∨H).Oneeasilyshows:b)HAE⇒HA(E)Hc)HAH→(E)H d)forS∈Σ,HA(S)H↔(SBy(a),(b)and(d)wehave: 34 ∨ H). e)S ∨ HHA◦ {(([A]nC)∨H)→([A]nD)H|(C→D)∈X}→(([A]◦nB)∨H). By(e)andpropositionallogicwefind: f)SHA{H→([A]nD)H|(C→D)∈X}→H.Soby(f)and(c):g)SHAH. Hence,by(g)and(‡viii),SHA [[A]]Y. 10OnΣ-Substitutions InthissectionweproveourmainresultsonΣ-substitutions.Giventheresultswealreadyhave,thisisrathereasy. Theorem10.1£HA,Σ,Σis,verifiablyinHA,aσ-relation. Proof EverypreservativityrelationsatisfiesA1-3,and,hence,sodoes£HA,Σ,Σ.More-over,£HA,Σ,ΣsatisfiesB1invirtueofourresultofsubsection9.1.£HA,Σ,ΣsatisfiesB2bycorollary9.2.£HA,Σ,ΣsatisfiesB3bylemma4.2(4).ItiseasytoseethatallthestepsareverifiableinHA.PLetRbeanyarithmeticallydefinablerelation.WewriteRHAfortherelationgivenby:mRHAn:⇔HAmRn.Theorem10.2Thefollowingrelationsarecoextensive: (a)σ,(b)£HAHA,Σ,Σ,(c)£HA,Σ,Σ,(d)∼HA,Σ,(e)∼HA,Σ. HA Proof Bytheorem10.1,£HAHA,Σ,Σisaσ-relation.So,(a)⊆(b).SinceHAissound,wefind(b)⊆(c).Bylemma4.2(6),(c)⊆£HA,,Σ=(e). Sincetheargumentforlemma4.2(6)isjustuniversalinstantiation,itisverifiable inHA.Hence(b)⊆(d). BythesoundnessofHA,wehave(d)⊆(e). Weshowthat(e)⊆(a),i.e.∼HA,Σ⊆σ.SupposenotAσB.Then,bycorollary7.2(1),A∗IPCB.A∗isIPC-provablyequivalenttoadisjunctionof 35 primeNNIL-formulas.Itfollowsthatforsomesuchdisjunct,sayC,CIPCB.TheHeytingalgebraHaxiomatizedbyCisprimeandRE.Bytheembeddingtheoremprovedin[dJV96](seesection8.2ofthispaper)thereisanf∈ΣP,suchthatHA∗fCandHA∗fB.SincefC∈NNIL(Σ),wehavebytheNNIL(Σ)-conservativityofHA∗overHA(provedin[Vis82];seealsosection8.2forthestatementofthefullresult),thatHAfC.SinceHAisasubtheoryofHA∗,wehaveHAfB.SinceIPCC→A,itfollowsthatHAfAandHAfB.Wemayconclude:notA∼HA,ΣB.PRemark10.3(1)ApropositionalformulaAisHA,Σ-exactiffthereisasub-stitutionf∈ΣP,suchthatHAfB⇔AIPCB,i.o.w.ifAaxiomatizesthe‘theoryoff’,i.e.ΛHA,{f}.Seealso[dJV96].Theproofoftheorem10.2estab-lishesalsothattheprimeNNIL-formulasarepreciselytheHA,Σ-exactformulas.(2)Bytheorem10.2,∼HA,Σisaσ-relation.Note,however,thatitisnotHA-provablyaσ-relation.ThereasonisthatclosureunderB1isnotverifiable.Toprovethis,supposeHAverifiesB1.LetRbethestandardRossersentence.SoRsatisfiesHAR↔PHA¬R≤PHAR.LetR⊥:=PHAR theotherhand,from(a),(b)andtheassumedverifiableclosureunder∼HA,Σ,wefindthat(e)HAPHA(R∨R⊥)→PHA⊥.Combining(d)and(e),wegetHAPHAPHA⊥→PHA⊥.Quodnon,byL¨ob’sTheorem. HA 11TheAdmissibleRulesofHA TheresultsofRosalieIemhoff[Iem99]implythefollowingtheorem. Theorem11.1(Iemhoff)∼IPC=α.Inotherwords:theadmissiblerulesofIPCareaxiomatizedbyA1,A2,A3,B1,B2.FromIemhoff’sresult,wederivethefollowingtheorem.Theorem11.2Thefollowingrelationsarecoextensive: (a)α,(b)£HAHA,Σ,A,(c)£HA,Σ,A,(d)∼HA,(e)∼HA,(f)∼IPC. HA Proof Wefirstshowthat(a)⊆(b).Itisclearlysufficienttoshowthat£HA,Σ,AisHA-verifiablyanα-relation.ClosureunderA1-3istrivial.Moreover,£HA,Σ,A 36 satisfiesB1invirtueofourresultofsubsection9.1.£HA,Σ,AsatisfiesB2bycorollary9.2. BythesoundnessofHA,wehave(b)⊆(c)and(d)⊆(e). Bylemma4.2(6),(c)⊆£HA,,A=(e).Sincelemma4.2(6)isverifiableinHA,wealsohave(b)⊆(d). Since,bydeJongh’stheorem,ΛHA=IPC,wefind,bytheorem4.4,that(e)⊆(f). Finally,bytheorem11.1,(f)⊆(a). P12ClosedFragments Inthissectionwestudytheclosedfragmentsoftheprovabilitylogicsofthreetheories.ThefirstisthetheoryHA∗.ThesecondisPeanoArithmetic,PA.ThethirdisHA.Wewillfirstintroducesomedefinitionsanprovesomebasicfacts. 12.1Preliminaries Considerthelanguageofmodalpropositionallogicwithoutpropositionalvari-ables.Let’scallthislanguageL2,0.SoL2,0isgivenasfollows.•A::=⊥||(A∧A)|(A∨A)|(A→A)|PA. 1 LetTbeanytheoryextending,say,i-S12,theintuitionisticversionofBuss’S2.WhatisrelevanthereisjustthatarithmetizationofmetamathematicsshouldbepossibleinTandthatTverifiestheL¨obconditions.WecanmaptheformulasofL2,0,sayviaeT,tothelanguageofT,bystipulatingthateTcommuteswithallthepropositionalconnectivesincludingand⊥andthat eTPA:=PTeTA:=ProvT(gn(eTA)). TheclosedfragmentCToftheprovabilitylogicofTisthesetofAinL2,0suchthatTeTA. Animportantclass,DF,ofclosedformulasisformedbythedegreesoffalsityPα⊥,whereαrangesoverω+:=ω∪{∞}.Here:•P0⊥:=⊥,•Pn+1⊥:=PPn⊥,•P∞⊥:=, 37 Wewilloftenusetheevidentmappingsdf:α→Pα⊥and:Pα⊥→α. Tolinktheclosedfragmentstotheframeworkofthispaper,wewillstudypurelypropositionaltheoriesassociatedtothesefragments.Thelanguageofthesepropositionaltheoriesistheusuallanguageofpropositionallogicwithas‘propositionalatoms’thedegreesoffalsity.Theseatomsfunctionmoreasconstantsthanaspropositionalvariables.WecallthislanguageBDF.SoBDFisgivenasfollows. •A::=Pα⊥|(A∧B)|(A∨B)|(A→B). WewillconsidertheoriesΘinBDF,whichsatisfy(atleast)intuitionisticpropo-sitionallogicandtheupaxiom:upPn⊥→Pn+1⊥. TheminimalsuchtheorywillbecalledUP.SoUPisaxiomatizedbyIPCandup.WewillsaythatΘisDF-irreflexiveifPα⊥ΘPβ⊥⇒α≤β.ItiseasytoshowthatUPisDF-irreflexive.NotethatsubtheoriesofDF-irreflexivetheoriesareDF-irreflexive. AnarithmeticaltheoryTwillhaveassociatedtoitthepropositionaltheoryΛT,eT:={A∈BDF|TeTA}.(StrictlyspeakingeThereistherestrictionofeTasdefinedabovetoBDF.) α WewillwritePαT⊥foreT(P⊥).WewillsaythatTisDF-soundif,fornon∈ω,TPnT⊥.Lemma12.1SupposeTisDF-sound.Then,ΛT,eTisDF-irreflexive. Proof SupposewehavePα⊥ΛT,eTPβ⊥.Weassume,toobtainacontradiction,that ββ+1 β<α.Then,bydefinition,Pα⊥TPβT⊥TPT⊥.Itfollowsthat:PTT⊥andβ∈ω.ByL¨ob’sRule,weobtainTPβT⊥.Butthisisimpossible,byDF-soundness.Ergoα≤β.PThefundamentalstructureinthestudyofclosedfragmentsisω+:=ω∪{∞}={0,1,2,···∞}equippedwiththeobviouspartialorder.ω+withpartialordercanbeextendedtoaHeytingalgebra.TheorderingfixestheoperationsoftheHeytingalgebrauniquely.Wehave:•:=∞,⊥:=0,•(α∧β):=min(α,β).•(α∨β):=max(α,β), ∞ifα≤β •(α→β):= βotherwise 38 Parabusdelangagewewilluseω+forbothset,partialorderandHeytingalgebra.Wewillputα+∞=∞+α=∞.Wewillrepeatlyusethefollowingconvenientproperty:α+n≤β+n⇒α≤β. Themapdf:α→Pα⊥canbeconsideredasafunctorfromω+,consideredasacategory,toatheoryΘconsideredasthecategoryofthepreorderΘ.Wewillbeinterestedintheorieswheredfhasarightadjoint∂Θ,i.e.wherewehave: •df(α)ΘA⇔α≤∂ΘA. Lemma12.2SupposeΘisDF-irreflexiveand∂Θexists.Then,∂ΘPα⊥=α. Proof Wehave,forDF-irreflexiveΘ, γ≤∂ΘPα⊥⇔Pγ⊥ΘPα⊥⇔γ≤α. PWewillwrite∂Tfor∂ΛT,eT.Wecan‘lift’∂ΘfromBDFtoL2,0usingtheauxiliaryfunction(·)aux:L2,0→BDFasfollows. •(·)auxcommuteswiththepropositionalconnectivesincludingand⊥,•(PA)aux:=Pdf∂ΘAaux Wecannowdefine∆Θ:L2,0→ω+,by∆ΘA:=∂ΘAaux.Weshowthat,forDF-irreflexiveΘ,∂Θand∆ΘcoincideonBDF-formulas. Lemma12.3SupposeΘisDF-irreflexive.LetA∈BDF.Then∆ΘA=∂ΘA. Proof SupposeΘisDF-irreflexive.Firstweshow,byinductiononn,that∆ΘPn⊥=n.Forn=0,thisisimmediate.Wehave: ∆ΘPk+1⊥= ===== ∂Θ(Pk+1⊥)aux ∂ΘPdf∂Θ(Pk⊥)aux∂ΘPdf∆ΘPk⊥∂ΘPdf(k)∂ΘPk+1⊥k+1. Itnowfollowsthat,forA∈BDF,wehaveAaux=A.Thetheoremfollowsdirectlyfromthis.P39 Finally,define,forA,BinBDF:•A∼T prov prov B:⇔TPTeTA→PTeTB. So∼isaformofprovabledeductiveconsequence.NotethatifTisΣ-sound, prov thenΛT,eT={A∈BDF|∼TA}.Wewillwritetheinducedequivalence prov relationof∼as≈prov. Thefollowingtheoremisthemainlemmaforthesubsequentdevelopment.Theorem12.4LetφbeafunctionfromBDFtoω+.WeputΦA:=PφA⊥.NotethatφandΦareinterdefinable.LetTbeatheorycontainingi-S12.LetΘbeaBDF-theorycontainingIPCandup.Weassumethefollowing.Z1TisDF-sound. Z2ΘisaT-sound,i.e.ΘA⇒TeTA,forA∈BDF.Z3ΦAΘA.Z4A∼T prov ΦA. Thenwehave:1.Θ=ΛT,eT. 2.ΦistheleftadjointoftheembeddingofΘinto∼T.Inotherwords, prov wehave:ΦAΘB⇔A∼TB.3.ThefullsubcategoryofΘobtainedbyrestrictiontoDFisequivalentto prov ∼T.Thissubcategoryisisomorphictoω+.4.Thefullsubcategoryof∼TobtainedbyrestrictiontoDFisaskeleton prov of∼T.Thissubcategoryisisomorphictoω+.5.φ(Pα⊥)=αandφ=δΘ.6.Wehave,foranyA∈L2,0: (a)CTA↔Aaux,(b)CTA⇔∆ΘA=∞. prov prov Proof (undertheassumptionsofthetheorem) Weprove(1).ByZ2,ΘisT-sound.WeshowthatitisalsoT-complete.SupposeTeTA.ThenTPTeTA.ByZ4,TPTeTΦA.ByZ1,itfollowsthatΦA=.ByZ3,wemayconcludethatΘA. 40 Weprove(2).NotethatfromZ3,4itfollowsthatΦC≈provC.Wehave:T ΦAΘB ⇒ ⇒⇒⇒⇒⇒⇒⇒ eTΦATeTB PTeTΦATPTeTBPTeTATPTeTBPTeTΦATPTeTΦBφA+1≤φB+1φA≤φBΦAΘΦBΦAΘB prov Weprove(3).TheequivalenceoftherestrictionofΘtoDFand∼T,isimmediatefromlemmaA.1(5).Since,byZ1,TisDF-sound,clearlyΘisDF-irreflexive.HencetherestrictionofΘtoDFisisomorphictoω+. Weprove(4).Therestrictionof∼TtoDFis,bylemmaA.1(4)andZ1, prov equivalentto∼T.Triviallytherestrictionisisomorphictoω+. Weprove(5).Thefirstpartisimmediatefromtheassumptionsofthetheorem.Thesecondpartfollowsby: dfαΘA⇔ΦdfαΘA prov ⇔dfα∼TA prov ⇔dfα∼TΦA⇔α≤φA Sincerightadjointsareuniquemodulonaturalisomorphism,itfollowsthatφ=δΘ. Weprove(6).Theproofof(6a)isbyinductiononA,usingthat,forB∈BDF,CTPB↔PΦB.(6b)isimmediatefrom(6a).PWeclosethissectionwithalemma.Lemma12.5LetB∈BDF.Thenwehave:HAeHAB↔eHA∗B↔ePAB. prov Proof ItiswellknownthatbothHA∗(seesubsection8.2)andPAareHA-provablyΠ02-conservativeoverHA.ItfollowsthatHAPHA⊥↔PHA∗⊥↔PPA⊥.ThelemmafollowsbyinductiononB.P41 12.2 TheClosedFragmentforHA∗ Insubsection8.2weintroducedHA∗andit’sprovabilitylogic.WesawthatinthislogicatleasttheprinciplesoftheconstructiveversionofL¨ob’sLogicplustheStrongL¨obPrincipleSLP,(PA→A)→A,hold. ThepropositionaltheoryUP∗istheBDF-theory,axiomatizedbytherulesofIPCplus •upPn⊥→Pn+1⊥, •slp(Pn+1⊥→Pn⊥)→Pn⊥. WedefineamappingφHA∗:=[[·]]fromBDFtoω∪{∞}asfollows:•[[⊥]]:=0,[[]]:=∞,•[[A∧B]]:=min([[A]],[[B]]),•[[A∨B]]:=max([[A]],[[B]]),•[[A→B]]:=([[A]]→[[B]]), DefinefurtherΦHA∗A:=A♦:=P[[A]]⊥.WewillverifyZ1-4oftheorem12.4forHA∗,UP∗and[[·]]. ClearlyHA∗isDF-sound.SowehaveZ1.Moreover,UP∗isHA∗-sound.thuswehaveZ2.Itiseasytosee,byaninductiononthesubformulasofA,thatforAinBDF: £UP∗A↔A♦. Theonlynon-trivialstepisthecaseofimplicationwhichusesslp.Itfollowsthat[[·]]definesanequivalencebetweenthecategoryofUP∗andω+. Itisnoweasilyseenthat£immediatelyimpliesbothZ3andZ4.ItfollowsthatUP∗=ΛHA∗,eHA∗.Moreover,since,evidently(·)♦isnaturallyisomorphictotheidentityfunctoronUP∗,wefindthatprovablydeductiveconsequence prov andderivableconsequencecoincideforHA∗,i.e.∼HA∗=UP∗. 12.3TheClosedFragmentofPA Friedman’s35thproblemwastogiveadecisionprocedurefortheclosedfrag-mentoftheprovabilitylogicofPA.See[Fri75].ItwasindepentlysolvedbyvanBenthem,BoolosandMagari.Topresentthesolutioninourstyle,wefirstintro-ducethetheoryUPc.ThisisclassicalpropositionallogicinthelanguageBDFwiththeprincipleup.ByasimplemodeltheoreticargumentonecanshowthatUPc=ΛPA,ePA.Thisfactwillalsofollowfromtheapplicationoftheorem12.4below.Notethat,trivially,UPcisPA-sound. ConsideranyAinBDF.InUPcwecanrewriteAtoanormalformnf(A)asfollows.FirstwerewriteAtoconjunctivenormalform,obtainingacon-junctionofdisjunctionsofdegreesoffalsityandnegationsofdegreesoffalsity.Thedisjunctionsofdegreesoffalsityandnegationsofdegreesoffalsitycanbe 42 rewrittentoimplicationsfromconjunctionsofdegreesoffalsitytodisjunctionsofdegreesoffalsity.Finally,usingup,wecancontractconjunctionsofde-greesoffalsityanddisjunctionsofdegreesoffalsitytosingledegreesoffalsity.α Thusweobtainaformulanf(A)oftheformi(Pi⊥→Pβi⊥).Wedefine:ΦPA:=(·)♥:=(·)♦◦nf.Here(·)♦isthefunctorfromsubsection12.2. WeverifyZ1-4oftheorem12.4forPA,UPcand(·)♦.Z1,2aretrivial.Wehave: •UPcA↔nf(A), •(nf(A))♦UPcnf(A)UPcA. Theseconditemissimplybyinspectingthecomputationof(·)♦onaformulaofthespecialformnf(A).Fromtheabove,wehaveZ3.Moreoverwehave: PPAePAAPA PA PPAePAnf(A)PPAePA(nf(A))♦. (1)(2) Thesteplabeled(2)isbyasimpledirectcomputation:firstbringthecon-junctionsoutsidetheboxandthenapplyL¨ob’stheoremtotheconjuncts(ifappropriate).ThuswehaveprovedZ4. Remark12.6Thereisanalternativewaytoprove(2)oftheaboveargument. PAPPAePAA→ →→→→→ PPAePAnf(A)PHAeHAnf(A)PHA∗eHA∗nf(A)PHA∗eHA∗(nf(A))♦PHAeHA(nf(A))♦PPAePA(nf(A))♦ (3)(4)(5)(6)(7)(8) Step(3)isshownsimplybyclassicallogic.(4)usesfirsttheHA-verifiableΠ02-conservativityofPAoverHAand,thenlemma12.5.(5)isbylemma12.5.(6)usestheresultsofsubsection12.2.(7)employstheHA-verifiableΠ02-∗ conservativityofHAoverHA.(8)isbylemma12.5. Ofcourse,thissecondargumentisasillywayofproving(2).Itismoredifficult,itusesmoretheoryanditislessgeneral(ifwereplacePAbyotherclassicaltheories).However,ituncoversananalogywiththeargumentwearegoingtogiveforthecaseofHA. WehaveverifiedtheassumptionsZ1-4oftheorem12.4.ThetheoremgivesusthedesiredcharacterizationoftheclosedfragmentofPA. Ourargument,whichisjustaformofpresentingtheclassicalargument,forthevanBenthem-Magari-BoolosresultworksforallDF-soundREextensions 8 ofBuss’sS1IncontrasttheproofofSolovay’sArithmeticalCompleteness2. TheoremonlyworksasfarasweknowifExpispresent. 8However, aswepointedout,theargumentofremark12.6doesnotworkingeneral. 43 12.4TheClosedFragmentofHA DefineΦHA:=(·)♣:=(·)♦◦(·)∗.Here(·)∗isthefunctordescribedinsection7.WewillverifyZ1-4oftheorem12.4withUPintheroleofΘ.Z1andZ2areimmediate.Wehave: (A∗)♦ UPUP A∗A (9)(10) (9)usesthefactthatA∗∈NNILandasimpleinductionofthecomplexityofNNIL-formulas.(10)isimmediatefromtheresultsofsection7.ThuswehaveprovedZ3.Finallywehave: HAPHAeHAA→ →→→ PHAeHAA∗PHA∗eHA∗A∗ PHA∗eHA∗(A∗)♦PHAeHA(A∗)♦ (11)(12)(13)(14) Step(11)followsfromtheorem10.2incombinationwiththeresultsofsection7.Step(12)useslemma12.5.(13)employstheresultsofsubsection12.2.(14)is ∗ bytheHA-verifiableΠ01-conservativityofHAovrHAandbylemma12.5.ThuswehaveverifiedZ4. Example12.7[Samplecomputations]Oftenthecharacterizationof(·)♣byA♣=P∂UPA⊥,providesaquickwaytocomputeA♣.FirstoneguessesthebestapproximationfrombelowinDFofA,thenoneproves,e.g.usingaKripkemodel,thattheconjecturedapproximationisindeedbest.Intheexamplesbelowweuseouralgorithm.Wewrite≈for≈provHA.1.ConsiderA:=¬P⊥→PP⊥.WefindthatA∗=P⊥ A≈P2⊥.2.ConsiderA=(¬¬PP⊥→PP⊥)→(P⊥PP⊥.WecomputeA∗. ∨ ∨ PP⊥.Hence, ¬P⊥).LetB:=¬¬PP⊥→ A≈(PP⊥→(P⊥∨¬P⊥))∧ ([B]¬¬PP⊥∨[B]P⊥∨[B]¬P⊥) ≈(PP⊥→(P⊥∨¬P⊥))∧(¬¬PP⊥∨P⊥∨¬P⊥)≈(PP⊥→(P⊥∨¬P⊥))∧(PP⊥∨P⊥∨¬P⊥) Applying(·)♦,wefindthatA≈P⊥. 3.ConsiderA=(¬¬P⊥→P⊥)→(PP⊥∨¬PP⊥).LetB:=¬¬P⊥→P⊥.WecomputeA∗,usingsomeshortcutsinvolvingUP-principles. A≈(P⊥→(PP⊥∨¬PP⊥))∧ ([B]¬¬P⊥∨[B]PP⊥∨[B]¬PP⊥)≈¬¬P⊥∨PP⊥∨¬PP⊥≈P⊥∨PP⊥∨¬PP⊥ 44 Applying(·)♦,wefindA≈P2⊥. 12.5ComparingThreeFunctors Inthislastsubsectionofclosedfragments,wecomparethefunctorsΦHA,ΦHA∗andΦPA.Byourpreviousresults,itsuficestocompare∂HA,∂HA∗and∂PA.Wehave: α≤∂HAA⇔df(α)UPA ⇒df(α)UPcA⇔α≤∂PAA Ergo,∂HAA≤∂PAA.Byasimilarargument,wefind∂HAA≤∂HA∗A.Nowconsiderthefollowingformulas: •Eα,β,γ:=(¬¬Pα⊥∧Pβ⊥)∨((¬¬Pα⊥→Pα⊥)∧Pγ⊥) Thenwehave,forα≤βandα≤γ,that∂HAEα,β,γ=α,∂HA∗Eα,β,γ=β,and∂PAEα,β,γ=γ.Thisshowsthat: {α,β,γ∈ω+3|∃A∈BDF∂HAA=α,∂HA∗A=β,∂PAA=γ} =+3 {α,β,γ∈ω|α≤β,α≤γ}. 12.6Questions 1.WhatarethepossibleΛT,eTforDF-soundREextensionsTofi-S12?ItisclearthattheymustbeRE,DF-irreflexiveBDF-theoriesextendingUP.2.CharacterizetheclosedfragmentsofHA+ECT0,HA+MPandHA+ECT0+MP.ItseemstomethatcloserinspectionoftheresultsofthepresentpapershouldrevealthattheclosedfragmentofHA+ECT0isthesameastheclosedfragmentofHA.3.IsthereaToftheappropriatekindwhere∼T adjoint? prov doesnothavealeft References [Bee75] M.Beeson.Thenonderivabilityinintuitionisticformalsystemsoftheoremsonthecontinuityofeffectiveoperations.TheJournalofSymbolicLogic,40:321–346,1975. G.Boolos.Thelogicofprovability.CambridgeUniversityPress,1993. [Boo93] 45 [Bur98][BV93] W.Burr.FragmentsofHeyting-Arithmetic.ToappearintheJSL,1998. A.BerarducciandR.Verbrugge.Ontheprovabilitylogicofboundedarithmetic.AnnalsofPureandAppliedLogic,61:75–93,1993. D.H.J.deJongh.ThemaximalityoftheintuitionisticpredicatecalculuswithrespecttoHeyting’sArithmetic.TheJournalofSymbolicLogic,36:606,1970. D.H.J.deJongh.Formulasofonepropositionalvariableinintu-itionisticarithmetic.InA.S.TroelstraandD.vanDalen,editors,TheL.E.J.BrouwerCentenarySymposium,StudiesinLogicandtheFoundationsofMathematics,vol.110,pages51–64.NorthHolland,Amsterdam,1982. D.H.J.deJonghandL.A.Chagrova.Thedecidabilityofdepen-dencyinintuitionisticpropositionallogic.TheJournalofSym-bolicLogic,60:495–504,1995. D.H.J.deJonghandA.Visser.EmbeddingsofHeytingalgebras.In[HHST96],pages187–213,1996. H.Friedman.Onehundredandtwoproblemsinmathematicallogic.TheJournalofSymbolicLogic,40:113–129,1975.H.Friedman.Classicallyandintuitionisticallyprovablyrecursivefunctions.InG.H.M¨ullerandD.S.Scott,editors,HigherSetTheory,pages21–27.SpringerVerlag,Berlin,Heidelberg,NewYork,1978. Yu.V.Gavrilenko.Recursiverealizabilityfromtheinuitionisticpointofview.SovietMathematicalDokl.,23:9–14,1981.S.Ghilardi.Unificationinintuitionisticlogic.TheJournalofSymbolicLogic,64:859–880,1999. R.Grigolia.FreeAlgebrasofNon-classicalLogics.MetsnierebaPress,Tbilisi,1987.InRussian. S.GhilardiandM.Zawadowski.Asheafrepresentationanddu-alityforfinitelypresentedHeytingalgebras.JournalofSymbolicLogic,60:911–939,1995. S.GhilardiandM.Zawadowski.UndefinabilityofPropositionalQuantifiersintheModalSystemS4.StudiaLogica,55:259–271,1995. [dJ70] [dJ82] [dJC95] [dJV96][Fri75][Fri78] [Gav81][Ghi99][Gri87][GZ95a] [GZ95b] 46 [H´aj96] [HHST96][Iem99] [IemXX] [JdJ98] [Lei75][Lei80][Lei81][Mac71] [Pit92] [Pli77][Pli78][Pli83][Ryb92][Ryb97] P.H´ajek,editor.G¨odel’96,LogicalFoundationsofMathematics, ComputerScienceandPhysics—KurtG¨odel’sLegacy.Springer,Berlin,1996. W.Hodges,M.Hyland,C.Steinhorn,andJ.Truss,editors.Logic:fromfoundationstoapplications.ClarendonPress,Oxford,1996.R.Iemhoff.OntheadmissiblerulesofIntuitionisticPropositionalLogic.PreprintPP-1990-08,ILLC,PlantageMuidergracht24,NL-1018TVAmsterdam,1999.ToappearinJSL. R.Iemhoff.AmodalanalysisofsomeprinciplesoftheprovabilitylogicofHeytingArithmetic.InProceedingsofAiML’98,volume2,Uppsala,20XX. G.JaparidzeandD.deJongh.Thelogicofprovability.InS.Buss,editor,Handbookofprooftheory,pages475–546.North-HollandPublishingCo.,amsterdamedition,1998. D.Leivant.Absolutenessinintuitionisticlogic,volume73.Math-ematicalCentreTract,Amsterdam,1975. D.Leivant.Innocuoussubstitutions.JournalofSymbolicLogic,45:363–368,1980. D.Leivant.Implicationalcomplexityinintuitionisticarithmetic.JournalofSymbolicLogic,46:240–248,1981. S.MacLane.CategoriesfortheWorkingMathematician.Num-ber5inGraduateTextsinMathematics.Springer,NewYork,1971. A.Pitts.Onaninterpretationofsecondorderquantificationinfirstorderintuitionisticpropositionallogic.JournalofSymbolicLogic,57:33–52,1992. V.E.Plisko.Thenonarithmeticityoftheclassofrealizablefor-mulas.Math.ofUSSRIzv.,11:453–471,1977. V.E.Plisko.Somevariantsofthenotionofrealizabilityforpredicateformulas.Math.ofUSSRIzv.,12:588–604,1978.V.E.Plisko.Absoluterealizabilityofpredicateformulas.Math.ofUSSRIzv.,22:291–308,1983. V.V.Rybakov.Rulesofinferencewithparametersforintuition-isticlogic.JournalofSymbolicLogic,57:912–923,1992.V.V.Rybakov.Admissibilityoflogicalinferencerules.StudiesinLogic.Elsevier,Amsterdam,1997. 47 [Sha93] [Smo73] [Smo85][Sta79][Tro73] [TvD88a] [TvD88b] [vB95] [Ver93][Vis81][Vis82][Vis85] [Vis94] V.Yu.Shavrukov.Subalgebrasofdiagonalizablealgebrasoftheoriescontainingarithmetic.Dissertationesmathematicae(Rozprawymatematycne),CCCXXIII,1993. C.Smory´nski.ApplicationsofKripkeModels.InA.S.Troelstra,editor,MetamathematicalInvestigationsofIntuitionisticArith-meticandAnalysis,SpringerLectureNotes344,pages324–391.Springer,Berlin,1973. C.Smory´nski.Self-ReferenceandModalLogic.Universitext.Springer,NewYork,1985. R.Statman.Intuitionisticpropositionallogicispolynomial-spacecomplete.TheoreticalComputerScience,9:67–72,1979.A.S.Troelstra.Metamathematicalinvestigationsofintuitionisticarithmeticandanalysis.SpringerLectureNotes344.SpringerVerlag,Berlin,1973. A.S.TroelstraandD.vanDalen.ConstructivisminMathematics,vol1.StudiesinLogicandtheFoundationsofMathematics,vol.121.NorthHolland,Amsterdam,1988. A.S.TroelstraandD.vanDalen.ConstructivisminMathematics,vol2.StudiesinLogicandtheFoundationsofMathematics,vol.123.NorthHolland,Amsterdam,1988. J.F.A.K.vanBenthem.TemporalLogic.InDovGabbayetal.,editor,HandbookofLogicinArtificialIntelligenceandLogicPro-gramming.OxfordUniversityPress,1995. L.C.Verbrugge.Efficientmetamathematics.ILLC-disserationseries1993-3,Amsterdam,1993. A.Visser.Aspectsofdiagonalizationandprovability.Ph.D.The-sis,DepartmentofPhilosophy,UtrechtUniversity,1981.A.Visser.Onthecompletenessprinciple.AnnalsofMathematicalLogic,22:263–295,1982. A.Visser.Evaluation,provablydeductiveequivalenceinHeyt-ing’sArithmeticofsubstitutioninstancesofpropositionalformu-las.LogicGroupPreprintSeries4,DepartmentofPhilosophy,UtrechtUniversity,Heidelberglaan8,3584CSUtrecht,1985.A.Visser.PropositionalcombinationsofΣ-sentencesinHeyting’sArithmetic.LogicGroupPreprintSeries117.DepartmentofPhi-losophy,UtrechtUniversity,Heidelberglaan8,3584CSUtrecht,1994. 48 [Vis96][Vis98a] A.Visser.Uniforminterpolationandlayeredbisimulation.In[H´aj96],pages139–164,1996.A.Visser.AnOverviewofInterpretabilityLogic.InM.Kracht,M.deRijke,H.Wansing,andM.Zakharyaschev,editors,Ad-vancesinModalLogic,vol1,CSLILectureNotes,no.87,pages307–359.CenterfortheStudyofLanguageandInformation,Stanford,1998. A.Visser.SubmodelsofKripkemodels.LogicGroupPreprintSeries189,DepartmentofPhilosophy,UtrechtUniversity,Heidelberglaan8,3584CSUtrecht,http://www.phil.uu.nl/preprints.html,1998.ToappearinArchiveforMathematicalLogic. A.Visser.RulesandArithmetics.TheNotreDameJournalofFormalLogic,40(1):116–140,1999. J.vanOosten.AsemanticalproofofdeJongh’stheorem.ArchiveforMathematicalLogic,31:105–114,1991. [Vis98b] [Vis99][vO91] [VvBdJdL95]A.Visser,J.vanBenthem,D.deJongh,andG.Renardel deLavalette.NNIL,aStudyinIntuitionisticPropositionalLogic.InA.Ponse,M.deRijke,andY.Venema,editors,ModalLogicandProcessAlgebra,aBisimulationPerspective,CSLILectureNotes,no.53,pages289–326.CenterfortheStudyofLanguageandInformation,Stanford,1995.[Yav97] R.E.Yavorsky.Logicalschemesforfirstordertheories.InSpringerLNCS(Yaroslavl’97volume),volume1234,pages410–418,1997. D.Zambella.Shavrukov’stheoremonthesubalgebrasofdiago-nalizablealgebrasfortheoriescontainingI∆0+EXP.TheNotreDameJournalofFormalLogic,35:147–157,1994. [Zam94] AAdjointsinPreorders Theconsequencerelationsweconsiderarepreorders.Apreorderisanon-emtysetwthareflexivetransitiverelation.Itisaspecialkindofcategory,viz.acategorywhere,betweenanytwoobjects,wehaveatmostonearrow.Inthepresentpaper,wewillusesomefactsfromcategorytheoryandsomefactsspecificforpreorders.Wecollectmostofthesefactsinthefollowinglemma.Theeasyproofsarelefttothereader. LemmaA.1Suppose≤isapreorderonCandthatisapreorderonD.Say,istheinducedequivalencerelationof≤and≡istheinducedequivalencerelationof.LetL:D→CbetheleftadjointfunctiontoR:C→D,thatisLd≤c⇔dRc,foreveryd∈Dandeveryc∈C.Thenthefollowingholds. 49 1.LRc≤canddRLd. 2.LandRareorderpreserving,inotherwords,LandRaremophismsofpreorders,andthusfunctorsofthecorrespondingcategories.3.Rc≡RLRcandLdLRLd. 4.SupposethatRisasurjectiononobjects.Then,foranyd∈D,d≡RLd.5.SupposeRisasurjectiononobjects.LetXbetherangeofL.Let≤0 bethefullsub-preorderof≤obtainedbyrestricting≤toX.Then,≤0isequivalentto.Thismeansthat,forx∈X,xLRxand,ford∈D,d≡RLd.6.L◦RisuniquelydeterminedmodulobyX:=range(L). 7.Supposewehavesumsonthepreorders≤and,i.e.therearebinaryfunctions∨and+suchthat •c1≤candc2≤ciff(c1ThenL(d+e)Ld∨Le. ∨ c2)≤c, •d1dandd2diff(d1+d2)d. Let£beasemi-consequencerelationonL(P).BothL(P),andL(P),£canbeconsideredaspreorders.A1tellsusthattheidenticalmapping:A→AisanembeddingfromL(P),toL(P),£.InthispaperweareinterestedincaseswherehasaleftadjointL.Ifsuchaleftadjointoftheembeddingfunctorexists,wecallL(P),areflectivesubcategoryofL(P),£.ThefunctorLiscalledthereflector.(See[Mac71]formoreonthesenotions.)Notethatisalsosurjectiveonobjects. Suppose£isanearly-consequencerelation.B1tellsusthat∨isasumforthecategory£.Sinceleftadjointscommutewithsums,bylemmaA.1(7),wehave:L(A∨B)↔(LA∨LB) BCharacterizationsandDependencies ConsideranyconsistentREtheoryT,extendingHA,inthelanguageofHA.Weintroducesomenotions,closelyrelatedtoΣ-preservativityforT.Define,suppressingtheindexforT,thefollowingconsequencerelations: ProvableDeductiveCons.UniformDeductiveCons. StrongUniformDeductiveCons.UniformProvablyDeductiveCons. A£pdcBA£udcBA£sudcBA£updcB:↔:↔:↔:↔P(PA→PB) ∀x∃y(PxA→PyB)∀x(PxA→PxB)∀x∃yP(PxA→PyB) WeprovetheOrey-H´ajekcharacterizationforΣ-preservativityandUniformProvableDeductiveConsequence. 50 TheoremB.1(Orey-H´ajek)Tprovesthatthefollowingareequivalent:(i)A£ΣB,(ii)∀xP(PxA→B),(iii)A£updcB. Proof ReasoninT.“(i)→(ii)”SupposeA£ΣBandconsideranyx.Wehave,bytheorem8.1,P(PxA→A)and(PxA)∈Σ,henceP(PxA→B). “(ii)→(iii)”FromP(PxA→B),wehavethat,forsomey,Py(PxA→B)andhencePPy(PxA→B).Ergo:P(PyPxA→PyB).Clearly,foranyu,P(PuA→PyPuA).WemayconcludeP(PxA→PyB).Hence,A£updcB.“(i)←(iii)”SupposeA£updcBandP(S→A).Itfollowsthat,forsomex,PPx(S→A).Moreover,P(S→PxS).SoP(S→PxA).Hence,forsomey,P(S→PyB).Ergo,byreflection,P(S→B).PTheoremB.2Wehave:TA£ΣB→A£udcB. Proof ReasoninT.SupposeA£ΣB.Consideranyx.WecanfindaysuchthatwehavePy(PxA→B).SupposePxA.Clearly,foranyu,PuA→PyPuA.ItfollowsthatPyB.PTheoremB.3(Orey-H´ajekforHA∗)Wehave: HA∗A£HA∗,ΣB↔A£udc,HA∗B. Proof ImmediatebytheprincipleC,theoremB.1andtheoremB.2.TheoremB.4HA∗(PHA∗A→B)→A£HA∗,ΣB. PProof ReasoninHA∗.SupposePA→B.Itfollowsthat∀x(PxA→B).Hence,∀xP(PxA→B).Thuswemayconclude,A£ΣB.P51 CModalLogicforΣ-Preservativity Considerthelanguageofmodalpropositionallogicwithaunarymodalopera-torPandabinaryoperator£.WedefinearithmeticalinterpretationsinthelanguageofHAintheusualmanner,interpretingPasprovabilityinHAand£asΣ-preservativityoverHA.WestatetheprinciplesvalidinHAforthislogic,knownatpresent.WiththeexceptionofΣ4andΣ8theseprinciplesarethedualsoftheprinciplesoftheinterpretabilitylogicILM.Foradiscussionofthisduality,see[Vis98a].L1L2L3L4Σ1Σ2Σ3Σ4Σ5Σ6Σ7 A⇒PA P(A→B)→(PA→PB)PA→PPAP(PA→A)→PAP(A→B)→A£BA£B ∧ B£C→A£C C£A∧C£B→C£(A∧B)A£C ∧ B£C→(A∨B)£C A£B→(PA→PB)A£PA A£B→(PC→A)£(PC→B) Σ8LetXbeafinitesetofimplicationsandlet Y:={C|(C→D)∈X}∪{B}. TakeA:=X.Then,(A→B)£{A}Y.Here(A→B)£{A}Yisshortfor(A→B)£{A}Yand{C}Disdefinedasfollows:–{C}p:=(C→p),{C}⊥:=⊥,{C}:=, –{C}PE:=PE,{C}(E£F)=(C→(E£F)),{C}(E→F):=(C→(E→F)),–{C}(·)commuteswith ∧ and∨. TheverificationofL1-L4,Σ1-Σ3,Σ5−Σ7isroutine.ForΣ4see9.1andforΣ8see9.2. FromourprinciplesLeivant’sprinciplecanbederived.(ThisisoneoftheStellingenof[Lei75].)Le P(A∨B)→P(A∨PB) Weleavethisasanexercisetothereader.Itisopenwhetherouraxiomsarearithmeticallycomplete. 52 因篇幅问题不能全部显示,请点此查看更多更全内容