您的当前位置:首页Contributions of Cherenkov Light to the Signals from Lead Tungstate Crystals

Contributions of Cherenkov Light to the Signals from Lead Tungstate Crystals

2020-11-25 来源:爱问旅游网
7002 lJu 62 ]ted-sni.scisyhp[ 13v104.7070:viXraContributionsofCerenkovˇLighttotheSignalsfromLeadTungstateCrystals

N.Akchurina,L.Berntzona,A.Cardinib,R.Ferraric,G.Gaudioc,J.Hauptmand,H.Kima,L.LaRotondae,M.Livanc,E.Meonie,H.Paarf,A.Penzog,D.Pincih,A.Policicchioe,S.Popescui,1

G.Susinnoe,Y.Roha,W.VandellicandR.Wigmansa,2

a

TexasTechUniversity,Lubbock(TX),USA

bDipartimentodiFisica,Universit`adiCagliariandINFNSezionediCagliari,ItalycDipartimentodiFisicaNucleareeTeorica,Universit`adiPaviaandINFNSezionedi

Pavia,Italy

dIowaStateUniversity,Ames(IA),USA

eDipartimentodiFisica,Universit´adellaCalabriaandINFNCosenza,Italy

fUniversityofCaliforniaatSanDiego,LaJolla(CA),USA

gINFNTrieste,Italy

hDipartimentodiFisica,Universit`adiRoma”LaSapienza”andINFNSezionediRoma

iCERN,Gen`eve,Switzerland

1Introduction

Inrecentyears,therehasbeenagrowinginterestinleadtungstate(PbWO4)crys-talsasdetectorsforhigh-energyparticles.AtCERN’sLargeHadronCollider,boththeCMS[1]andALICE[2]experimentsarecompletingverylargeelectromag-netic(em)calorimetersystemsconsistingofthesecrystals.Smallerdetectorsofthistypeareeitheroperatingorplanned,forexampleforthePANDA[3]andHY-CAL[4]experiments.Leadtungstatecrystalsareattractiveasdetectorsforemshowersbecauseoftheirhighdensity,whichimpliesashortradiationlengthandMoli`ereradius,theirfastsignalsandtheirrelativeinsensitivitytotheeffectsofra-diationdamage.Onthedownside,wementionthesmalllightyield,lessthan1/300ofthelightyieldofthewidelyusedNaI(Tl)andCsI(Tl)crystals[5].Becauseofthissmalllightyield,andthelargeeffectiveZvalue,itisreasonabletoassumethatasignificantfractionofthelightproducedbyPbWO4ofCerenkovˇcrystalsisactuallytheresultradiation,ratherthanmolecularde-excitation.WehaveshownpreviouslythatthecombinedavailabilityofCerenkovˇandscintil-lationsignalsforhadronicshowersmakesitpossibletoeliminatetheeffectsofthedominatingsourceoffluctuationsincalorimetrichadrondetection,andthuscon-siderablyimprovehadroniccalorimeterperformance[6].However,becauseofsmallCerenkovˇthe

lightyield,samplingcalorimetersarelessthanidealfortakingfulladvantageofthis.Ontheotherhand,homogeneouscalorimeterswhoselightnalscouldbesplitintoscintillationandCerenkovˇsig-componentsholdgreatpromise

forhigh-qualityhadroncalorimetry[7].

Forthesereasons,wesetouttomeasurethecompositionofthesignalsproducedbyPbWO4crystals3.InSections2and3,wedescribethemethodsusedtode-terminetheCerenkovˇcomponentofthemeasuredsignals,andtheexperimental

setupinwhichthecrystalsweretested.InSection4,wediscusstheexperimentaldatathatweretakenandthemethodsusedtoanalyzethesedata.InSection5,theexperimentalresultsarepresentedanddiscussed.AsummaryandconclusionsarepresentedinSection6.

2MethodstodistinguishCerenkovˇfromscintillationlight.

IfonewantstodistinguishthecontributionsfromtheCerenkovˇandscintillation

componentstothesignalsfromcrystalsthatgenerateamixtureofthese,suchasPbWO4,onecoulduseoneorseveralofthefollowingcharacteristics:

(1)Directionality.TheCerenkovˇlightisemittedatafixedanglewithrespectto

themomentumvectoroftheparticlethatgeneratesit,whilethescintillationlightisisotropicallyemitted.

(2)Timestructure.TheCerenkovˇlightisprompt,whereasscintillationprocesses

haveoneorseveralcharacteristic(3)Thespectrum.TheCerenkovˇdecaytimes.

lightisemittedwithacharacteristicλ−2spec-trum,whilethescintillationprocesseshavetheir(4)Polarization.Contrarytoscintillationlight,Cerenkovˇowncharacteristicspectra.

lightispolarized.Inthepresentstudy,wehaveexploitedthefirsttwocharacteristics.Itisawell

knownfactthatthelightyieldofPbWO4crystalsisverytemperaturedependent.Itchangesby-2.3%perdegreeCelsius.Thisisobviouslyonlytrueforthelationlight.Therefore,thefractionofthelightthatisproducedbytheCerenkov

ˇscintil-mechanismisexpectedtoincreasewithtemperature.Ourmeasurementshavebeenperformedatroomtemperature.OneshouldkeepthisinmindwhentranslatingourresultstotheALICEexperiment,fromwhichthecrystalswetestedwereborrowed.TheALICEPbWO4calorimeteroperatesatamuchlowertemperature(−wheretherelativecontributionsofCerenkovˇ15◦C),

lighttothesignalsarecorrespond-inglysmaller4.

2.1Directionality

Cerenkovˇlightisemittedbychargedparticlestravelingfasterthanc/n,thespeed

oflightinthemediumwithrefractiveindexninwhichthisprocesstakesplace.Thelightisemittedatacharacteristicangle,θC,definedbycosθC=1/βn.Inthecaseofsufficientyrelativisticparticles(i.e.,β∼1)traversingPbWO4crystals(n=2.2),θC∼63◦.

InordertodetectthecontributionofCerenkovˇlighttothesignalsfromaPbWO4

crystal,weequippedbothendsofthecrystalwithaphotomultipliertube(PMT).Byvaryingthedetectororientationwithrespecttothedirectionoftheincoming

particles,acontributionofCerenkovˇlightwouldthenmanifestitselfasanangle-dependentasymmetry.ThisisillustratedinFigure1,whichshowsthesetupofthe

initialmeasurementsweperformedwithacosmic-raytelescopetotestthisprin-ciple[7].ThePMTgainswereequalizedfortheleftmostgeometry,inwhichthecrystalwasorientedhorizontally.Bytiltingthecrystalthroughanangle(θ)thattheaxisofthecrystalisattheCerenkovˇsuch

angleθCwithrespecttotheparticle

direction,Cerenkovˇlightproducedbythecosmicraystraversingthetriggercoun-terswouldbepreferablydetectedineithertheL(centralgeometry)orR(rightmost

geometry)PMT.Bymeasuringtheresponseasymmetrytionofthetiltangleθ,thecontributionofCerenkovˇ(R−L)/R+L)asafunc-lighttothedetectorsignals

Fig.1.PrincipleoftheasymmetrymeasurementusedtoestablishthecontributionofˇCerenkovlighttothesignalsfromthePbWO4crystals.Dependingontheorientation,thisdirectionallyemittedlightcontributesdifferentlytothesignalsfromtheleftandrightpho-tomultipliertubes.

couldbedetermined.

ˇTheinitialcosmic-raymeasurementsindicatedthatthecontributionofCerenkov

lightwasatthelevelof15-20%[7].Becauseoftheextremelyloweventratesandthetinysignals(typically20-30MeV),wedecidedtoperformsystematicstudiesusingparticlebeams.Theresultsofthesestudiesarethetopicofthepresentpaper.

2.2Timestructure

ThescintillationprocessinPbWO4hasadecayconstantof∼10ns,whereastheˇCerenkovcomponentofthesignalsisprompt.Inthecosmic-raymeasurementsmentionedabove,wealsostudiedthetimestructureofthesignals,usingafastoscilloscopecapableofstoringbothpulseshapessimultaneously.Thesemeasure-mentsqualitativelyconfirmedtheexpecteddifferencesbetweenthesignalsmea-suredintheRandLPMTs[7].However,lowstatisticsandverysmallsignalslimitedthequalityoftheinformationthatcouldbederivedfromthesemeasure-ments.Inthebeammeasurementsdescribedhere,wemeasuredthesignalshapeswithveryfastFlashADCs(effectivesamplingfrequency800MHz).AsisshowninFigure2,thisturnedouttobeawonderfulexperimentaltool.Inaperiodofafewdays,detailedpulseshapeswererecordedformillionsofevents.Thefigureclearlyshowstheadditionalpromptsignalcomponentthatappearswhenthecrystalisro-ˇtatedfromapositioninwhichCerenkovlightdoesnotcontributetothesignals

(θ=−30◦)toapositionwhereitdoes(θ=30◦).ThetrailingedgeofthePMTsignalsisnotaffectedbythisrotationandisindeedingreatdetail(includingthe

4

Fig.2.AveragetimestructureofthesignalsmeasuredwiththePMTreadingoutoneend(R)ofaPbWO4crystaltraversedby10GeVelectrons,fortwodifferentorientationsofcrystal.Atθ=30◦,Cerenkovˇthe

lightcontributestothesignals,atθ=−30◦,itdoesnot.

effectsofreflectionsinthesignalcables)identicalforthesetwopulseshapes.

3Experimentalsetup3.1Detectorandbeamline

ThemeasurementsdescribedinthispaperwereperformedintheH4beamlineof

theSuperProtonSynchrotronatCERN.OurdetectorwasaPbWO4crystalwithalengthof18cmandacrosssectionof2.2×2.2cm2.Thetransversedimen-sion,relevantforourmeasurements,correspondsto2.5radiationlengths.Thelightproducedbyparticlestraversingthiscrystalwasreadoutbytwophotomultipliertubes5,locatedatoppositeends.InordertoreducethelighttrappingeffectsofthelargerefractiveindexofPbWO4,thePMTswerecoupledtothecrystalbymeansofsilicone“cookies”(n=1.403).

Thiscrystalwasmountedonaplatformthatcouldrotatearoundaverticalaxis.Thecrystalwasorientedinthehorizontalplaneandtherotationaxiswentthroughitsgeometricalcenter.Theparticlebeamwasalsosteeredthroughthiscenter,asillustratedinFigure3.Theangleθ,whichisfrequentlyusedinthefollowing,rep-resentstheanglebetweenthecrystalaxisandaplaneperpendiculartothebeamline.TheangleincreaseswhenthecrystalisrotatedsuchthatthecrystalaxisL-Rapproachesthedirectionofthetravelingbeamparticles.ThecrystalorientationsshowninFigures2and3correspondthustoθ>0andθ<0,respectively.

Fig.3.Experimentalsetupinwhichthebeamtestswereperformed.

Twosmallscintillationcountersprovidedthesignalsthatwereusedtotriggerthedataacquisitionsystem.TheseTriggerCounters(TC)were2.5mmthick,andtheareaofoverlapwas6×6cm2.Acoincidencebetweenthelogicsignalsfromthesecountersprovidedthetrigger.

3.2Dataacquisition

Measurementofthetimestructureofthecrystalsignalsformedaveryimportantpartofthetestsdescribedhere.Inordertolimitdistortionofthisstructureasmuchaspossible,weused15mmthickair-corecablestotransportthedetectorsignalstothecountingroom.Suchcableswerealsousedforthesignalsfromthetriggercounters,andthesewereroutedsuchastominimizedelaysintheDAQsystem6.Dependingonthedesiredtypeofinformation,thecrystalsignalswereeithersenttoachargeADC,ortotheFADC.Theresponseasymmetrymeasurementswerebasedonthedigitizedintegratedcharge,thetimestructurewasmeasuredwiththeFlashADC7,whichdigitizedtheamplitudeofthesignalsatarateof200MHz.Duringatimeintervalof80ns,16measurementsoftheamplitudewerethusob-tained.Inordertofurtherincreasethisrate,andthusimprovethetimeresolutionofthismeasurement,weusedseveralinputchannelsforeachsignal.Thecrystalsignalsweresplit(passively,withcorrectimpedancematching)into4equalpartsatthecountingroomend.These4signalsweremeasuredseparatelyin4differentchannelsoftheFADCmodule.Signals2,3and4weredelayedby1.25ns,2.50nsand3.75nswithrespecttosignal1.ByusingtheFADCmoduleinthisway,the

timestructureofthesignalswasthuseffectivelymeasuredwitharesolutionof1.25ns(800MHz).

ThequalityoftheinformationobtainedinthiswayisillustratedinFigure2,whichshowstheaveragetimestructureofthesignalsfrom10GeVelectronstraversingthecrystalforθ=30◦and−30◦,respectively.

Thechargemeasurementswereperformedwith12-bitLeCroy1182ADCs.Thesehadasensitivityof50fC/countandaconversiontimeof16µs.TheADCgatewidthwas100ns,andthecalorimetersignalsarrived∼20nsafterthestartofthegate.

ThedataacquisitionsystemusedVMEelectronics.AsingleVMEcratehostedalltheneededreadoutandcontrolboards.ThetriggerlogicwasimplementedthroughNIMmodulesandthesignalsweresenttoaVMEI/Oregister,whichalsocollectedthespillandtheglobalbusyinformation.TheVMEcratewaslinkedtoaLinuxbasedcomputerthroughanSBS6208opticalVME-PCIinterfacethatallowedmemorymappingoftheVMEresourcesviaanopensourcedriver9.Thecomputerwasequippedwitha2GHzPentium-4CPU,1GBofRAM,andwasrunningaCERNSLC4.3operatingsystem10.

Thedataacquisitionwasbasedonasingle-eventpollingmechanismandperformedbyapairofindependentprogramsthatcommunicatedthroughafirst-in-first-outbuffer,builtontopofa32MBsharedmemory.Onlyexclusiveaccesseswereal-lowedandconcurrentrequestsweresynchronisedwithsemaphores.ThechosenschemeoptimizedtheCPUutilizationandincreasedthedatatakingefficiencybyexploitingthebunchstructureoftheSPS,wherebeamparticleswereprovidedtoourexperimentduringaspillof4.8s,outofatotalcycletimeof16.8s.Duringthespill,thereadoutprogramcollecteddatafromtheVMEmodulesandstoredthemintothesharedmemory,withsmallaccesstimes.DuringtheremainderoftheSPScycle,arecorderprogramdumpedtheeventstothedisk.Moreover,thebufferpresenceallowedlow-prioritymonitoringprogramstorun(off-spill)inspymode.Withthisscheme,wewereabletoreachadataacquisitionrateashighas2kHz,limitedbytheFADCreadouttime.Thetypicaleventsizewas∼1kB.Alldetectorsignalsweremonitoredon-line.

3.3Calibrationofthedetectors

Theabsolutecalibrationofthesignalsgeneratedbythecrystalwasnotamajorconcerninthesetests.Ontheotherhand,itwasabsolutelyessentialthatthegains

ofthe2PMTs,LandR,thatcollectedthelightgeneratedinthecrystalsatthetwooppositeendsofthecrystalwereequalized.Weused10GeVelectronsforthatpurpose.Thecrystalwasorientedsuchthatthebeamenteredthedetectorperpen-ˇdiculartothecrystalaxis(θ=0),sothatanyCerenkovlightgeneratedbythe

beamparticleswouldbeobservedinthesameproportionbybothPMTs.Thehighvoltageswerechosensuchthattheaveragesignalswereabout300ADCcountsabovethepedestalvalue.Off-line,thecalibrationconstantswerefine-tunedsuchastoequalizetheresponsesofthetwoPMTs.

4Experimentaldata

Thecrystalswereexposedtobeamsof150GeVµ+and10GeVelectrons.Theangleθbetweenthecrystalaxisandtheplaneperpendiculartothebeamlinewasvariedfrom−45◦to45◦,instepsof7.5◦.Ateachangle,100000eventswerecollectedfortheresponseasymmetrymeasurements,andanother100000forthetimestructure.

Sincetheparticlestraversedthedetectorperpendiculartothelongitudinalcrys-talaxis,theeffectivethicknessofthecrystalwasonlyafewradiationlengths(2.5X0/cosθ)inthissetup.Inordertoprobetheemshowersatgreaterdepth,wealsoperformedaseriesofmeasurementsinwhichtheelectronstraversed4cmoflead(∼7X0)installeddirectlyupstreamofthecrystal.Inthisway,thelightgeneratedinthecrystalsreflectedtheparticledistributionjustbeyondtheshowermaximum,atadepthof7−10X0.Toavoidintroducingtoolargeachangeinthiseffectivedepth,thelattermeasurementswerelimitedtoanglesθrangingfrom−30◦to30◦.Separatemeasurementswereperformedoftheresponseasymmetryandofthetimestructure.Asbefore,100000eventswerecollectedforeachrun.

5Experimentalresults5.1Left-Rightasymmetry

Wedefinetheresponseasymmetryastheratio(R−L)/(R+L),whereRandLrepresenttheaveragesignalsmeasuredinthePMTsRandLforthesameevents.Sincethesesignalswereequalizedforθ=0,anynon-zerovalueinthisratioisindicativeforanon-isotropiccomponentinthelightgeneratedinthecrystals,

ˇi.e.,Cerenkovlight.Therelationshipbetweenthisresponseasymmetry(tobecalledαinthefollowing)

8

ˇandtherelativecontributionofCerenkovlighttothePMTsignals11canbeseen

ˇasfollows.IfwecalltherelativecontributionsofCerenkovlighttotheRandL

signalsǫRandǫL,respectively(withǫRandǫLnormalizedtothescintillatorsignalsineachchannel),then

ǫR−ǫL

α=

1+ǫR

=

11

ItshouldbeemphasizedthatthisdiscussionconcernsthePMTsignals,andnotthenum-bersofphotonsproducedbythedifferentmechanisms.Forthelatter,differencesinproduc-tionspectraandphotocathodequantumefficiencieswouldhavetobetakenintoaccount.

9

Fig.4.Left-rightresponseasymmetrymeasuredfor10GeVelectronsshoweringina2.5X0thickPbWO4crystal,asafunctionoftheorientationofthecrystal(theangleθ).Resultsareshownfortheearlyandthelatecomponentsoftheshowers.Thelattermeasurementswereobtainedbyplacing4cmofleadupstreamofthecrystal.

ˇtotalacceptanceforCerenkovlightinbothPMTscombinedreachesitsminimum

value.

Theaboveargumentsare,strictlyspeaking,onlyvalidforparticlesthattraversethecrystalinadirectionparalleltothebeam.Upontraversingthecrystal,thebeamelectronslosealargefractionoftheirenergy(typically>80%)radiatingbremsstrahlungphotons.Therelativisticelectronsandpositronsproducedwhenthesephotonsconvertinthecrystaltravelalsopredominantlyinthesamedirection.Forthepurposeofthisexperiment,theearlypartoftheelectromagneticshowersprobedinthismeasurementthusresemblesacollectionofparticlestravelingallapproximatelyinthesamedirection,i.e.,paralleltothebeamline.

However,astheshowerdevelops,sodoesitsisotropiccomponent.ThiscomponentisprimarilyduetoshowerelectronsgeneratedinComptonscatteringorthroughthephotoelectriceffect.Infullycontainedemshowers,thiscomponentisresponsibleforabouthalfofthesignal[8].Itisalsothankstothiscomponentthat0◦quartz-fibercalorimeters,suchastheCMSHF,producemeaningfulsignals[9].

Forthisreason,wealsowantedtomeasuretheeffectofthisincreasedisotropyontheleft/rightresponseasymmetry.Byplacing4cmofleaddirectlyupstreamofthecrystal,theelectronshowersdevelopedinalead/PbWO4combination.For10GeVelectrons,theshowermaximumwaslocatedatadepthof∼5X0,(i.e.,insidethe

10

leadabsorber),andthecrystalprobedthelightproducedatadepthof7−10X0.Figure4alsoshowstheresponseasymmetrymeasuredforthislight.Theasym-metryisconsiderablysmallerthanforthelightproducedintheearlypartoftheshower,byaboutafactorofthree.Yet,thecharacteristicsofthe(R−L)/(R+L)curveindicatethatalsointhiscase,theasymmetryistheresultofthecontribu-ˇtionofCerenkovlighttothesignals.Thereductioninthenetdirectionalityofthe

measuredlightindicatestheimportanceoftheisotropicshowercomponent.Inanotherpaper,wedescribetheresultsofmeasurementsweperformedon(almostfully)containedelectromagneticshowerswithaPbWO4calorimeter.Inthatcase,theasymmetryresultedfromtheintegrationoverthefulllongitudinalshowerpro-file,withtheearlypartcontributingmosttothenetasymmetryandthelatestpartsverylittle,ifanything.Wemeasuredforsuchshowersanoverallresponseasym-metryof0.044[10],i.e.,∼60%oftheasymmetryobservedinthefirst2−3X0reportedhere.

Fig.5.Signaldistributionfor150GeVµ+traversingthe2.5X0thickPbWO4crystalper-pendicularly(θ=0).Theinsertshowstheresultsoffitstothemostprobablesignalregion.Seetextfordetails.

Thesignalsmeasuredintheseexperimentswereverysmall.AccordingtoEGS4simulations,10GeVelectronsdepositedonaverage320MeVinthePbWO4crys-tal,whenitwasplacedperpendiculartothebeamline.However,thiswasstilloneorderofmagnitudelargerthanthesignalsrecordedforthemuons.Figure5showsatypicalsignaldistribution,measuredinoneofthePMTsforθ=0.Basedonacomparisonwiththe10GeVelectronsignals,thisdistributiongaveamostprobableenergydepositof25MeV.

11

Fig.6.Left-rightresponseasymmetrymeasuredfor150GeVmuonstraversinga2.5X0thickPbWO4crystal,asafunctionoftheorientationofthecrystal(theangleθ).Theasym-metryconcernsthemostprobablesignalvaluederivedfromaLandaufit(thetriangles)oraGaussianfit(theclosedcircles),ortheaveragesignalvalue(theopensquares).

Themostprobablesignalvaluewasalsousedfortheresponseasymmetrymeasure-mentfortheseparticles.However,theLandaufitsdidingeneralnotreproducethemeasuredsignaldistributionsverywell.Thisisbecausethebeamspotwaslargerthanthetransversesizeofthecrystal.Asaresult,manybeamparticlesmissedthecrystal(asevidencedbythelargepedestalpeakinFigure5),whereasotherstraverseditclosetotheedge,scatteringout,leadingtosub-mipsignals.Forthisreason,wealsostudiedtheleft-rightasymmetryusingtwoothercharacteristicsofthesignaldistribution:theaveragesignalandtheresultofaGaussianfitaroundthemostprobablevalue(seeinsertFigure5).

Theangulardependenceoftheleft-rightasymmetryformuonstraversingthePbWO4crystalisshowninFigure6,forallthreefigures-of-meritderivedfromthesig-naldistributions.Thiscurveshowsthesamegeneralcharacteristicsastheonemeasuredfortheelectrons(Figure4).Themaximumasymmetryismeasuredforθ≈θC(27◦),inthePMTorientedintheoptimaldirectionfordetectingtheˇCerenkovlight.Themaximumasymmetryis∼0.08,whichtranslatesintoa15%

ˇcontributionofCerenkovlighttothetotalsignalsatthatangle(Equation2).It

alsoseemsthattheasymmetryissomewhatsmallerwhentheaveragedetectorsig-ˇnalisusedinsteadofthemostprobablevalue.ThismightindicatethatCerenkov

lightproducedintheradiativecomponentoftheenergylostbythemuonsissome-whatlessdirectionalthanthatproducedbytheionizingcomponent.Thiswouldbeconsistentwiththeobservationsoftheasymmetryinelectromagneticshowers

12

discussedabove.

Basedonthesignaldistributionsobservedinthesemeasurementsandontheas-sumptionthattheenergydepositionby10GeVelectronsiscalculatedcorrectlybyGEANT4,wecandeterminethespecificenergylossofmuonsinPbWO4.Themostprobableenergylossis11.6MeV/cm,whilethemeasuredaverageenergylostby150GeVµ+is13.2MeV/cm.

Fig.7.Distributionoftheleft-rightresponseasymmetry,measuredfor10GeVelectronstraversingthecrystalatθ=30◦,togetherwiththeresultsofaGaussianfit.

Wecanalsodeterminethe“lightyield”ofthecrystalsandPMTsusedinourstud-ies,orratherthenumberofphotoelectronsmeasured(withthePMTschosenforthesestudies)perunitdepositedenergy.Figure7showstheevent-to-eventdistri-butionoftheleft-rightasymmetrymeasuredfor10GeVelectronstraversingthecrystalatθ=30◦,togetherwiththeresultsofaGaussianfit.Atθ=0◦,thewidthofthedistributionincreasedfrom0.0334to0.0384.Ifweassumethatthewidthisdominatedbystatisticalfluctuationsinthenumberofphotoelectrons,thenaσof0.0384translatesintoanaveragenumberofphotoelectronsof∼340perPMT,or∼1photoelectronperMeVdepositedenergy.Atθ=0◦,thewidthofthe(R−L)/(R+L)distributionforthe150GeVµ+was0.1274,whichtranslatesintoanaveragesignalof31photoelectronsperPMT.

Theaveragesignalfromthe10GeVelectronsincreasedby47%whenthecrystalwasrotatedfrom0◦to30◦.Thisreflectstheonsetoftheshowerdevelopment,sinceasimpleincreaseinpathlength(∼cos−1θ)wouldonlyleadtoa15%increase.Themeasuredwidthoftheasymmetrydistributionat30◦(σ=0.0334)correspondstothestatisticalfluctuationsin448photoelectrons/PMT,anincreaseofonly32%withrespecttothe0◦case.Thefactthatthedecreasingwidthdoesnotmatchtheincreasedsignalindicatesthatotherfactors(e.g.,temperatureeffects,responsenon-uniformities)didcontributetothemeasuredwidthandthat,therefore,theestimated

13

lightyieldisinfactalowerlimit.

ThedistributionshowninFigure7illustratesoneotherimportantaspectoftheseexperimentaldata.Allthemeasurementresultsreportedinthispaperconcernav-erages.Boththeobservedleft/rightasymmetries,andalsotheangulardependenceofthetimestructurediscussedinthenextsubsection,concerntheaveragecharac-teristicsofalargenumberofevents,typically100000.Thequestionariseshow

ˇaccuratelyonecandeterminetheCerenkovcontentofthesignalfromoneparticu-lareventonthebasisofthesecharacteristics.Figure7providesananswertothat

question,forwhatconcernstheleft/rightasymmetry.Itshowsthat,ifforaparticu-lar10GeVelectrontraversingthiscrystal,anasymmetryismeasuredof0.080,theexperimentaluncertaintyonthisnumberis0.033(1standarddeviation).Inother

ˇwords,thatparticularsignalcontains14.8±5.9%Cerenkovlight(Equation2).Of

course,thiserrorbarisstronglydeterminedbyphotoelectronstatistics,especiallyattheselowenergies(∼0.4GeV).

Wewanttore-emphasizethatalltheseresultsconcernsoneparticularcrystal,op-eratedatroomtemperature.Noattemptsweremadetocontrolthetemperature,ortomeasureatemperaturedependenceoftheobservedeffects.5.2Timestructureofthesignals

ˇAsecondvaluabletoolforrecognizingthecontributionsofCerenkovlighttothe

calorimetersignalsisderivedfromthetimestructureoftheevents.Thisisillus-tratedinFigure8,whichshowstheaveragetimestructureofthe10GeVshowersignalsrecordedwiththesamePMTatdifferentanglesofincidence,namelyθ=30◦andθ=−30◦.ThediagramsonthelefthandsiteofthisfigureconcernPMTR.ˇCerenkovlightproducedbythetraversingelectronandbytheparticlesproducedintheearlyshowercomponentareexpectedtobedetectedbythisPMTwhenthecrystalisorientedatθ=30◦,whileverylittle,ifanything,willreachthisPMTatθ=−30◦.Thefigureshowsthatthetrailingedgesofbothtimestructuresarealmostcompletelyidentical.Thispartofthetimestructureofthepulsesiscom-pletelydeterminedbythedecaycharacteristicsofthescintillationprocessesinthePbWO4crystalsandshouldthusindeedbeindependentofthedetectororientation.However,thereisaverysignificantdifferenceintheleadingedgeofthepulses.Theonesmeasuredforθ=30◦exhibitasteeperrisethantheonesforθ=−30◦.Thetopgraphsshowtheresultofsubtractingthelatterpulseshapefromthe“30◦”one:Thepulsesrecordedatθ=30◦containanadditional“prompt”componentof

ˇthetypeonewouldexpectfromCerenkovlight.ThereversesituationisobservedintheotherPMT(L).Here,thepromptadditional

componentisobservedinthetimestructureofthepulsesrecordedwhenthecrys-talwasorientedatθ=−30◦.AlsointhisPMT,thetimestructurebeyondthe

14

Fig.8.Averagetimestructuresofthesignalsmeasuredintheleft(L)andright(R)photo-multipliertubesthatdetectthelightproducedby10GeVelectronsina2.2X0thickPbWO4crystal.Thebottomplotsshowthesesignalsforanglesθ=±30◦,forPMTsRandL,re-spectively.Thetopplotsshowthedifferencebetweenthetwoorientations,i.e.,thePMT’s

ˇresponsefunctiontoapromptCerenkovcomponentinthesignal.

amplitudeofthesignalswasfoundtobeindependentofthecrystalorientation.Theseresultsconfirmthepromptnatureoftheadditionallightcomponentob-servedintheleft/rightasymmetrymeasurements,andprovidemoreevidencefor

ˇtheCerenkovmechanismbeingresponsiblefortheobservedphenomena.ThefigureshowsminordifferencesbetweentheshapesofthepromptcomponentsobservedinthetwoPMTs.Thesearemostlikelyduetodifferencesinthecharac-teristcsofthesetubes.PMTL,whichoperatedataslightlyhigherhighvoltage,respondedtoaδ-functionwithaσrmsof2.3ns,vs.2.8nsforPMTR.Asaresult,

ˇtheresponsetotheCerenkovcomponenthadaslightlydifferenttimestructurein

thesePMTs.

TheaveragepulseshapesshowninFigure8makeitalsopossibletodeterminethe

ˇcontributionofCerenkovlighttothecrystalsignals.Inthecaseofthe10GeVelec-trons,theadditionalcomponentrepresented∼12%ofthetotalsignalinPMTR

and13%inPMTL.Forcomparison,werecallthattheleft/rightasymmetrymea-ˇsurementsledustoconcludethat,attheCerenkovangle,thesesignalscontained,

ˇonaverage,∼13%ofCerenkovlight12.Wehavealsostudiedtheangulardependenceoftheaveragepulseshape.Sincethe

ˇCerenkovcontributionmanifestsitselfintheleadingedgeofthetimestructure,wehavedevelopedseveralmethodstocharacterizethepropertiesofthatpartofthepulseshapeinaquantitativemanner.TwoofthesemethodsareillustratedinFigure9.Inthefirstmethod(Figure9a),weusedanappropriatefunctiontodescribethe

Fig.9.Thecharacteristicsofthetimestructureofthesignalsaredeterminedwithtwodifferentmethods.Inmethoda,theleadingedgeisfittedtoEquation3,andthefitted

ˇparameterstLandτLdeterminetheCerenkovcontentofthesignal.Inmethodb,thetime

atwhichthepulseheightexceedsacertainthresholdlevelisusedforthispurpose.Seetextfordetails.

timestructure.Itturnsoutthattheleadingedgeofthepulseshape,V(t),iswelldescribedbyafunctionofthefollowingtype:

V(t)=|A|

󰀁

1

pulseheightexceedsacertainfixedthresholdlevel,e.g.,-50mV.AnincreaseintheˇCerenkovcontentofthesignalwillshiftthatpointtoanearliermoment.SomeresultsoftheseanalysesareshowninFigures10and11.Figure10showsthe

Fig.10.Averageleadconstant,τL(seeEquation3),ofthepulsesrecordedbyPMTR,asafunctionoftheorientationofthecrystal,i.e.,theangleθ.Datafor10GeVelectrons.

valueoftheleadconstant,τL,measuredforthe10GeVelectronsignalsfromPMT

ˇR,asafunctionoftheangleθ.Fornegativevaluesofθ,Cerenkovlightproduced

bytheelectronswasnotdetectedbythisPMT.Thepulseshapeisindependentofθ,withaτLvalueof1.20ns.However,whenthecrystalwasrotatedtowardsvalues

ˇofθ>0,Cerenkovlightproducedbytheshoweringparticlesbecameasignificant

componentofthesignalsmeasuredbyPMTR,andtheleadingedgeofthepulseshapesteepened(τLbecamesmaller).ThisprocesscontinueduntilθreachedtheˇCerenkovangle(∼30◦),atwhichpointτLreachedaminimumvalueof∼1.09ns.

ˇForlargerangles,theacceptanceofCerenkovlightdecreasedagainandtheleading

edgebecamelesssteep,τLincreased.TheτLvaluemeasuredforthesignalsfromPMTLshowsasimilarbehavior:Itisconstantforθ>0,decreasesforθ<0,reachesaminimumvalueforθ=−30◦andincreasesagainforlargerangles.Figure11showstheresultsofananalysisofthethresholdcrossingtime,forsignalsgeneratedby150GeVµ+.ThedifferencebetweenthecrossingtimesofthesignalsrecordedbyPMTsRandLisgivenasafunctionoftheangleθ,fortwodifferentthresholdlevels.Thisdifferenceissettozeroforθ=0.Thefigureshowsthatthedifferenceisnegativeforθ>0.AsaresultoftheincreasingcontributionofˇCerenkovlighttothesignalsfromPMTR,thethresholdwascrossedearlierinthis

ˇPMT,andthereforetheplottedquantityisnegative.Whenθ<0,Cerenkovlight

contributedtothesignalsfromPMTL,andtheplottedquantityispositive.Asinthecaseoftheresponseasymmetry,themaximumdifferenceisobservedforan-ˇglesneartheCerenkovangle,∼30◦.Theresultsarequalitativelynotsignificantly

differentforthetwodifferentthresholdlevels,buttheydoindicateaslightlylarger

17

Fig.11.AveragedifferencebetweenthetimesthetwoPMTsreadingoutthetwosidesofthecrystalneededtoreachacertainthresholdlevel,asafunctionoftheorientationofthecrystal(i.e.,theangleθ).Datafor150GeVµ+,andtwodifferentthresholdvalues.

effectforthehigherthreshold.

Asinthecaseoftheleft/rightasymmetry,theresultsshowninFigures10and11concerntheaveragebehaviorobservedforlargenumbersofevents(100000).Theerrorbarsinthesefiguresindicatetheprecisionwithwhichtheparameterinquestionisdeterminedforindividualevents.Thesizeoftheseerrorbars,whichforthesesmallsignalsiscompletelydominatedbyphotoelectronstatistics,issuchthatthevalueoftheleadconstant(τL)orthethresholdcrossingtimedoesnotprovide

ˇstatisticallysignificantinformationaboutthe(sizeofthe)contributionofCerenkov

lighttothesignalinquestion.

6Conclusions

ˇWehavemeasuredthecontributionofCerenkovlighttothesignalsfromelec-tronsandmuonsinleadtungstatecrystals.Inthechosengeometry,whichwas

optimizedfordetectingthiscomponent,informationaboutthiscontributionwasobtainedfromtheleft/rightresponseasymmetryandfromthetimestructureofthesignals.Forsingleparticlestraversingthecalorimeter(muons),themaximumˇCerenkovcontributiontothesignalswasmeasuredtobe15−20%.Themeasure-mentsforelectronshowersindicatedsomewhatlowervalues,becauseofthecon-tributionsofisotropicallydistributedshowerparticlestothesignals.Thisreducedthemeasuredasymmetriesintheresponseandtimestructureofthesignals.Thiseffectwasmeasuredtoincreaseinimportanceastheshowerdeveloped.Theasym-metriesmeasuredfor10GeVelectronsinthefirst2-3radiationlengthswereaboutthreetimeslargerthanthosemeasuredatadepthof7−10X0,i.e.,justbeyondthe

18

showermaximum.

Acknowledgments

ThestudiesreportedinthispaperwerecarriedoutwithPbWO4crystalsmadeavailabletousbythePHOSgroupoftheALICECollaboration.WesincerelythankDrs.MikhailIppolitovandHansMullerfortheirhelpandgenerosityinthiscontext.WethankCERNformakingparticlebeamsofexcellentqualityavailable.ThisstudywascarriedoutwithfinancialsupportoftheUnitedStatesDepartmentofEnergy,undercontractDE-FG02-95ER40938.

References

[1]

P.Rumerio,ComissioningoftheCMSElectromagneticCalorimeterandOperationalExperience,Proc.oftheXIIthInt.Conf.onCalorimetryinHighEnergyPhysics,Chicago,June5-9,2006,AIPConf.Proc867(2006)301.

M.Ippolitov,Energy,TimingandTwo-PhotonInvariantMassResolutionofa256-ChannelPbWO4Calorimeter,Proc.oftheXIthInt.Conf.onCalorimetryinHighEnergyPhysics,Perugia,March29-April2,2004,WorldScientific(2006)103.R.Novotny,TheElectromagneticCalorimeteroftheFuturePANDADetector,Proc.oftheXIIthInt.Conf.onCalorimetryinHighEnergyPhysics,Chicago,June5-9,2006,AIPConf.Proc867(2006)106.

A.Gasparian,AHigh-PerformanceHybridElectromagneticCalorimeteratJeffersonLab,Proc.oftheXIthInt.Conf.onCalorimetryinHighEnergyPhysics,Perugia,March29-April2,2004,WorldScientific(2006)109.

R.Y.Zhu,PrecisionCrystalCalorimetersinHighEnergyPhysics:Past,PresentandFuture,Proc.oftheXIIthInt.Conf.onCalorimetryinHighEnergyPhysics,Chicago,June5-9,2006,AIPConf.Proc867(2006)61.

N.Akchurinetal.,Nucl.Instr.andMeth.A537(2005)537.R.Wigmans,Nucl.Instr.andMeth.A572(2007)215.

R.Wigmans,Calorimetry-EnergyMeasurementinParticlePhysics,InternationalSeriesofMonographsonPhysics,vol.107,OxfordUniversityPress(2000).N.AkchurinandR.Wigmans,Rev.Sci.Instr.74(2003)2955.

[2]

[3]

[4]

[5]

[6][7][8][9]

[10]N.Akchurinetal.(DREAMCollaboration),Dual-ReadoutCalorimetrywithLeadTungstateCrystals,submittedtoNucl.Instr.andMeth.(2007).[11]N.Akchurinetal.,Nucl.Instr.andMeth.A548(2005)336.

19

因篇幅问题不能全部显示,请点此查看更多更全内容