您的当前位置:首页二次根式的化简

二次根式的化简

2023-03-25 来源:爱问旅游网

  (第1课时)

  一、教学目标

  1.掌握二次根式的性质

  2.能够利用二次根式的性质化简二次根式

  3.通过本节的学习渗透分类讨论的数学思想和方法

  二、教学设计

  对比、归纳、总结

  三、重点和难点

  1.重点:理解并掌握二次根式的性质

  2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习对比,归纳整理,应用提高,以学生活动为主

  七、教学步骤

  (一)教学过程

  【复习引入】

  1.求值 、 、 、 …

  求值 、 、 、 …

  结论:当 时, ;

  当 时, .

  2.求值 、 …

  结论:当 时,式子有意义, ,对于 , 不能为负数.

  3.求值 、 …

  结论:当 时, .

  问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?

  例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数.

  【讲解新课】

  提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:

  教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆.

  例1  化简:

  (1) ; (2) .

  解:(略).

  注: 可看作 ,把 先写为 ;

  可看作 ,把 先写为 .

  例2  化简: .

  分析:底数 是非负数还是负数将直接影响结果,这时要注意条件,由条件 ,可得 .

  ∴ .

  解:(略).

  例3  化简下列各式:

  (1) ( ); (2) ( );

  (3) ( ); (4) ( ).

  解:(1)∵

  ∴  .

  ∴ 

  .

  (2)∵

  ∴ ,即 .

  ∴

  .

  (3)∵

  ∴ ,即 .

  ∴

  .

  (4)∵ ,

  ∵ ,即 .

  ∴ .

  注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.

  在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.

  (二)随堂练习

  1.求值:

  (1) ;(2) ;(3) ( );

  (4) ;(5) .

  解:(1) .

  (2) .

  (3) .

  (4) .

  (5) .

  注: ,学生易与 相混淆.

  2.化简:

  (1) ;(2) ;(3) ;

  (4) ( ); (5) ( ).

  解:(1) .

  (2) .

  (3) .

  (4) .

  (5) .

  (三)总结、扩展

  对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.

  (四)布置作业 

  教材P213中1(2)、(3);2(1)、(2).

  (五)板书设计

  标  题

  1.复习题 4.练习题

  2.公式

  3.例题

因篇幅问题不能全部显示,请点此查看更多更全内容