您的当前位置:首页数学教案:正比例的意义

数学教案:正比例的意义

2022-07-27 来源:爱问旅游网

  教学内容:教科书第19—21页正比例的意义,练习六的1—3题。

  教学目的:

  1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。

  2.初步培养学生用事物相互联系和发展变化的观点来分析问题。

  3.初步渗透函数思想。

  教具准备:投影仪、投影片、小黑板。

  教学过程:

  一、复习

  用,投影片逐一出示下面的题目,让学生回答。

  1.已知路程和时间,怎样求速度?板书: =速度

  2.已知总价和数量,怎样求单价?板书: =单价

  3.己知工作总量和工作时间,怎样求工作效率?板书:

  =工作效率

  4,已知总产量和公顷数,怎样求公顷产量?板书: =公顷产量

  二、导人新课

  教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)

  三、新课

  1.教学例1。

  用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:

  提问:

  “谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)

  “表中有哪几种量?”

  “当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”

  “这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)

  教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”

  教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?

  让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60, =60…… 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。

  然后教师指着 =60, =60 = 60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)

  教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)

  2.教学例2。

  出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

  让学生观察上表,并回答下面的问题:

  (1)表中有哪两种量?

  (2)米数扩大,总价怎样?米数缩小,总价怎样?

  (3)相对应的总价和米数的比各是多少?比值是多少?

  当学生回答完第二个问题后,教师板书: =3.1, =3.1, =3.1……

  然后进一步问:

  “这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)

  教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。

  3.抽象概括正比例的意义。

  教师:请同学们比较一下刚才这两个例题,回答下面的问题;

  (1)都有几种量?

  (2)这两种量有没有关系?

  (3)这两种量的比值都是怎样的?

  教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)

  接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?

  最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?

  学生回答后,教师板书: =K(一定)

  4,教学例3。

  出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

  教师引导:

  “面粉的总重量和袋数是不是相关联的量?”·

  “面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书: =每袋面粉的重量(一定))

  “已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”

  5.巩固练习。

  让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。

  四、课堂练习

  完成练习六的第1—3题。

  第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)

  第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

  第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。

因篇幅问题不能全部显示,请点此查看更多更全内容