复习内容:
四年级、五年级教材中的《找规律》
教学目标:
1.通过复习进一步了解间隔现象、简单搭配、排列现象、简单周期现象和简单图形覆盖现象中的规律。
2.能正确、熟练地运用发现的规律解决相应的实际问题,提高分析推理能力。
3.在探索规律、运用规律的过程中,感受数学与生活的联系,体验探究的乐趣。
教学准备:教师准备四、五年级教材中的相关内容。
教学过程:
一、揭示课题:
谈话:数学无处不在,在同学们生活的周围,存在着许许多多的数学规律,运用这些规律我们又能解决很多实际问题。今天这节课,我们复习以前学习过的《找规律》的一些知识。
二、复习整理
1.间隔现象的排列规律。
植树现象:
(1)两端都种,间隔数+1=棵数
(2)两端都不种,间隔数-1=棵数
(3)如果一端种,另一端不种,间隔数=棵数
在首尾相接的封闭排列中,物体的个数与间隔数是相等的。类似的现象还有锯木头、爬楼梯等。
练一练:有一条长800米的公路,在公路的一侧从头到尾每隔20米栽一棵杨树,需要多少棵树苗?
学生读题后独立思考并解答,然后交流。
教师及时小结:要求需要多少棵树苗,先要求出这条公路有多少个20米,即先算出间隔数。因为是在公路一侧从头到尾种树,所以杨树棵数比间隔数多1。
2.简单搭配、排列现象中的规律。
师:生活中经常会遇到与搭配有关的实际问题,如:服饰选配、饮食搭配、路线选配------用符号表示,有顺序地思考是解决这类问题的有效方法。
练一练:从小明家到少年宫有3条路,从少年宫到新华书店有4条路,那么从小明家到新华书店一共有多少条行走路线?
学生独立思考并解答,然后交流想法。
3.简单周期现象中的规律。
师:通过观察发现简单周期现象中的规律,能根据规律确定某个序号所代表的是什么物体或图形,计算周期规律排列的某类物体或图形一共有多少个。
练一练:小红在家练习硬笔书法时,写“北京奥运北京奥运------”依次写下去,那么第24个应是什么字?第45个呢?
学生独立思考并解答后交流。
教师及时小结:因为“北京奥运”这四个字依次重复出现,所以把每4个字看作一组,24÷4=6组,没有余数,说明第24个字是第6组的最后一个字,也就是“运”字。(同理分析第2个问题。)
4.简单图形覆盖现象中的规律。
师:可以用平移的方法探索并发现简单图形覆盖现象中的规律,根据某个图形平移的次数推算出被该图形覆盖的总次数,从而解决相应的实际问题。
在探索和发现规律的过程中,画图、列举、计算都是常用的策略。
练一练:在下表中,每次圈出相邻的3个数,一共可以得到多少个不同的和?每次圈出4个相邻的数呢?
学生独立思考后解答,再交流想法。
1
2
3
4
5
6
7
教师及时小结。
三、巩固练习
1.街心公园一条林荫小路长200米,在林荫小路的两旁从头到尾等距离栽种月季花,共栽了82棵。每两棵月季花相距多少米?
2.“六一”儿童节时,教室里按“2红、1黄、1蓝”的顺序挂彩灯,一共要挂38盏。算一算,最后一盏是什么颜色的灯?
3.学校会议室里每排有20个座位,张老师、李老师、王老师打算坐栽第一排三个相邻的座位上,李老师在张老师的右边,王老师在李老师的右边。一共有多少种不同的坐法?
4.丁丁的爸爸、妈妈各自去外地出差了,他们三人每两人通一次电话,一共通了多少次电话?如果他们互相写一封信,一共写了多少封信?
四、全课总结
课前思考:
现在进入到复习阶段,在和学生一起学习的同时,也越来越感受到自己本身知识的缺乏,就拿孙老师所说的间隔问题。这是学生之前学过的知识,而且也有一定的规律,很多学生都没有掌握好。作为一个新老师,我也不了解这方面的知识。但由于在练习中遇到这类题型,知道是间隔问题,所以我去请教了任教四年级的数学老师。从另一个层面来说,作为一名毕业班的教师,我一直是处于被动的状态中,一直要发现问题才想去解决问题。在讲解练习的过程中,我和学生一起学习了有关间隔问题的求法,从学生的反馈来看,大部分学生是一脸茫然。孙老师本节课的安排,可以让学生再次巩固一下。
课前思考:
在6月3日与5日的会议上,朱红伟老师与苏主任都谈到了在检测中要对《找规律》与《解决问题的策略》这两个内容需要检测,检测的难度限于例题与试一试,我想要进行系统的复习可能化时比较多。看了四~六年级的教材,其中替换、倒推是解决问题策略中学生比较难理解的内容,图形的平移规律是找规律中不太用,学生可能已经遗忘的知识点,否可以补充一些五六年级这两方面内容的例题,在讲解分析例题的同时帮助学生复习整理。建议将这两个内容花一课时时间复习。
课后反思:
有关植树问题较之前相比,很多学生都能掌握,但在做巩固练习第一题时有一小部分学生都没有做对,究其原因主要是这题求的是“间隔数”而不是通常求的“棵数”再加上在公路的两边都种月季花,所以一部分学生没能转过弯来。
在巩固练习第3题的基础上,我让学生思考:如果把“李老师在张老师的右边,王老师在李老师的右边”这一条件去掉,一共有多少种不同的坐法?学生完成得也不错,从这节课的复习情况来看,找规律的知识学生基本都能掌握。
因篇幅问题不能全部显示,请点此查看更多更全内容