摘要
本次课程设计的题目是35KV电网继电保护设计一一距离保护。主要任 务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电 网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给 35KV 的输电线路设计合适的继电保护。根据给定的相关数据,首先设计了输电线 路图,然后进行整定计算。根据对距离保护 I, II, III段保护的整定计算, 熟悉距离保护的基本原理。根据这次设计总结距离保护的优缺点。并对这次 设计进行总结。
关键词:35kv继电保护、整定计算、故障分析、短路电流计算
第一章概论 ................................................ .3..…
1.1继电保护的基本概念 ............................................ 3.…
第二章距离保护的要求 ...................................... 4…
2.1 电力系统距离保护 ............................................. 4.…
2.1.1 距离保护概念及适用范围 ....................................... .4…
2.1.2 距离保护的时限特性 .......................................... 4…
2.2 阻抗继电器 .................................................... 5.....
第三章 距离保护的计算 .................................. 6...
3.1 系统电路图 .................................................... 6.....
3.2 短路电流计算 .................................................. 6....
3.3 距离保护的整定 ................................................ 1.0..
3.4 本设计的具体计算 ............................................. 15..
3.4.1 距离保护I段的整定计算 ........................................ 1.5.
3.4.2 距离保护II段的整定计算和校验 ............................... .15
3.4.3 距离保护III段的整定计算和校验 .............................. .16
第四章距离保护的评价 ........................................ 17
4.1距离保护的优缺点和应用范围 .................................... 1.7
第五章设计心得 ............................................... 18 参考文献 ..................................................... 19
第一章概论
1.1 继电保护的基本概念
在电力系统运行中,外界因素(如雷击、鸟害等)
、内部因素(绝缘老
化,损坏等)及操作等,都可能引起各种故障及不正常运行的状态出现,常 见的故障有:单相接地;三相接地;两相接地;相间短路;短路等。
电力系统非正常运行状态有:过负荷,过电压,非全相运行,振荡,次 同步谐振,同步发电机短时失磁异步运行等。
电力系统继电保护和安全自动装置是在电力系统发生故障和不正常运行 情况时,用于快速切除故障,消除不正常状况的重要自动化技术和设备。电 力系统发生故障或危及其安全运行的事件时,他们能及时发出告警信号,或 直接发出跳闸命令以终止事件。
继电保护的基本任务:
(1)自动迅速,有选择的跳开特定的断路器 (2)反映电气元件的不正常运行状态
电力系统对继电保护的基本要求 :速动性,选择性,灵敏性,可靠性。
第二章距离保护的要求
2.1 电力系统距离保护
2.1.1 距离保护概念及适用范围
距离保护是反应故障点至保护安装地点之间的距离(或阻抗)。并根据距 离的远近而确定动作时间的一种保护装置。该装置的主要元件为距离(阻抗) 继电器,它可根据其端子上所加的电压和电流测知保护安装处至短路点间的 阻抗值,此阻抗称为继电器的测量阻抗。当短路点距保护安装处近时,其测 量阻抗小,动作时间短;当短路点距保护安装处远时,其测量阻抗增大,动 作时间增长,这样就保证了保护有选择性地切除故障线路。
用电压与电流的比值(即阻抗)构成的继电保护,又称阻抗保护,阻抗元 件的阻抗值是接入该元件的电压与 电流的比值:U/I=Z ,也就是短路点至保 护安装处的阻抗值。因线路的阻抗值与距离成正比,所以叫距离保护或阻抗 保护。距离保护分为接地距离保护和相间距离保护等。
距离保护分的动作行为反映保护安装处到短路点距离的远近。与电流保 护和电压保护相比,距离保护的性能受系统运行方式的影响较小。
距离保护分为接地距离保护和相间距离保护等。距离保护适用于 及以上的电压等级电路。
35kv
2.1.2 距离保护的时限特性
距离保护一般都作成三段式,第1段的保护范围一般为被保护线路全长
的80 %〜85 % ,动作时间
ttl
为保护装置的固有动作时间。第II段的保护范围 需与下一线
路的保护定值相配合,一般为被保护线路的全长及下一线路全长 的30 %〜40 % ,其动作时限要与下一线路距离保护第1段的动作时限相 配合,一般为0. 5s左右。第田段为后备保护,具保护范围较长,包括本线 路和下一线路的全长乃至更远,其动作时限3按阶梯原则整定。
tn
2.2 阻抗继电器
阻抗继电器针对的是线路的阻抗而言,故而分析线路阻抗是非常必要的。 通常起动元件采用过电流继电器或阻抗继电器。为了提高元件的灵敏度,也可 采用反应负序电流或零序电流分量的复合滤过器来作为起动元件。
第三章距离保护的计算
3.1 系统电路图
E手眼
图3-1
3.2 短路电流计算
当K2点发生短路时,短路电流的计算如下:最大运行方式下, 路的等值电路图
K2点短
I/1.. 4
AAAA
r\\
n AA/V\\ [ 图3-2-1 等值简化电路图
图 3-2-2
最大运行方式下k2短路时,A电站、C电站到短路点的转移电抗分别为:
XAK=5.333/2+0.75=3.417
XCK=0.292+0.876+0.75+4/2=3.918
A电站、C电站到短路点的计算电抗为:
XJSA=3.417 X(2 X3/0.8)/100=0.256
AAAA 0
XJSC=3.918 X(2X4/0.8)/100=0.391
查运算曲线图,得A、C短路电流标幺值为:
IA0.2*=3.175 IC0.2*=2.412
有名值为:
IAK0.2=3.175 X15/(37 X错误!未找到引用源。)=0.74KA
ICK0.2=2.412 X10/(37 X错误!未找到引用源。)=0.38KA
最小运行方式下,K2点短路的等值电路图
5.333 175 唔? 哪 175
0
AAAA AAAA AAM I AAM AAAA AAAA :
图 3-2-3
等值简化电路图:
图 3-2-4
最小运行方式下k2短路时,A电站、C电站到短路点的转移电抗分别为
XAK=0.75+5.333=6.083
XCK=0.292+0.876+0.75+4=5.917
计算电抗为
XJSA=6.083 X3.75/100=0.228 XJSC=5.917 X5/100=0.30
查运算曲线图,得A、C短路电流标幺值为
旧0.2*=3.433 IC0.2*=2.950
有名值为
IAK0.2=3.433 X3.75/(37 X错误!未找到引用源。)=0.201KA
ICK0.2=2.950 X5/(37 X错误!未找到引用源。)=0.23KA
按照上述方法,可求得 K3、K4、K5、K6、K7、K8点短路时相应的短 路电流。
3.3距离保护的整定
(1)距离I段的整定
距离保护I段无延时的速动段它应该只反映本线路的故障,下级出口处
发生短路故障时应可靠不动作,所以测量元件的阻抗整定应该躲过本线路末 端短路时的测量阻抗来整定。即 set
Z
K
I rel
L A B 1
Z
其中
Kr
el
<1因为距离保护是欠量保护,考虑到继电器误差、互感器误差
和参数测量等误差等因素一般取 0.8~0.85
T ]
L A是被保护线路的长度
71是被保护线路单位长度的正序阻抗 (2)距离II段的整定
1、分支电路对测量阻抗的影响。在距离保护R段整定时,类同于电流
保护,应考虑分支电路对测量阻抗的影响,如图所示。
(b)外汲分支电路对测量阻抗的影响
图中k1点发生三相短路时,保护1处的测量阻抗为
U A I AB Z AB IBCk
Z
Z ml \"
I AB
k
.
ZAB KbZk
I AB
式中Z :母线B与短路点之间线路的正序阻抗;
Kb:分支系数。在助增分支电路和外汲分支电路中
Kb
不同。
2、R段的整定阻抗。距离保护R段的整定阻抗,应按照以下两个原则 进行计
算。
(1)与相邻线路距离保护I段相配合。距离R段的整定阻抗为:
Zset.1 Krel ZAB Kb.minZset.2
K . rel
式中,K 为可靠系数,一般取0.8;
(2)与相邻变压器的快速保护相配合。距离R段的整定阻抗为:
Zset.1 K rel ZAB K b.min Z t
K ..............................
同为可靠系数,考虑变压器阻抗误差较大,一般取 0.7〜0.75。
当被保护线路末端母线上既有出线又有变压器时,距离n段的整定阻抗 应分别按上述两种情况计算,取其中的较小者作为整定阻抗。
3、灵敏度校验
距离保护R段,应能保护线路的全长,本线路末端短路时,应有足够的 灵敏度。考虑到各种误差因素,要求灵敏系数应满足
K
红 1.25
Z
sen
AB
如果Ksen不满足要求,则距离保护 段相配合,计算方法与上面类似。
1的II段应改为与相邻元件的保护H
4、动作时间的整定
距离保护n段的动作时间,应与之配合的相邻元件保护动作时间大一个
(x) 2
t
t (x)
式中t 为与本保护配合的相邻元件保护段(x为I或R段)最大的动作时 问。
2
(3)距离田段的整定 1、田段的整定阻抗。距离保护第田段的整定阻抗,按以下几
个原则计算:
(1)按与相邻下级线路距离保护R段配合时,田段的整定阻抗为
Zset.1 Krel ZAB Kb.minZs^.2
可靠系数Krel的取法与R段整定中类似,分支系数 Kb应取各种情
况下的最小值
如果与相邻下级线路距离保护n段配合灵敏系数不满足要求,则应改为 与相邻
下级线路距离保护的田段相配合
o
(2)按与相邻下级变压器的电流、电压保护配合整定。定值计算为:
Zsetl (ZB
ZK^nZmin
式中min为电流、电压保护的最小保护范围对应的阻抗值。
(3)按躲过正常运行时的最小负荷阻抗整定。
当线路上的负荷最大且母线电压最低时,负荷阻抗最小,其值为
U L.min (0.9 〜0.95)UN
ZL.min
I L.max
I L.max
式中U L.min为正常运行母线电压的最低值;I L.max为被保护线路最大负 荷电流;UN为母线额定电压。
参照过电流保护的整定原则,考虑到电动机自启动的情况下,保护田段 必须立即返回的要求,若采用全阻抗特性,则整定值为:
Z1
J L.min set 1 se. । K
rel K SSK re
Z
式中Krel为可靠系数,一般取1.2〜1.25 ; ss为电动机自启动
K
系数,
取1.5〜2.5 ; Kre为阻抗测量元件(欠量动作)的返回系数,取 1.15〜1.25 。
若采用方向圆特性,必须考虑动作阻抗随阻抗角的变化,由躲开的负荷 阻抗换算成整定阻抗值,整定阻抗可由下式给出,式中 set为整定阻抗的阻
L为负荷阻抗的阻抗角
Zset.1
ZL.min ZreiZssZre set L
按上述三个原则进行计算,取其中的较小者作为距离田段的整定阻抗。
2、灵敏度校验。
距离保护的田段,既作为本线路I、R段保护的近后备,又作为相邻下
级设备保护的远后备,灵敏度应分别进行校验。
作为近后备时,按本线路末端短路校验,计算式为
Kseni 舁 1.5
Z
AB
作为远后备时,按相邻设备末端短路校验,计算式为
一
----- Ze ------ 1.2 K
ZAB Kb.maxZnext
式中
Z next 为相邻设备(线路、变压器等)的阻抗; K b. max 为分支系 数
最大值,以保证在各种运行方式下保护动作的灵敏性。
3、动作时间的整定。
距离保护田段的动作时间,应比与之配合的相邻设备保护动作时间大一 个时间级差t,但考虑到距离田段一般不经历震荡闭锁, 于最大其动作时间不应小 的震荡周期(1.5~2s )
3.4本设计的具体计算
3.4.1 距离保护I段的整定计算
(1)动作阻抗
对输电线路,按躲过本线路末端短路来整定,则取y3=0.85 ,所以
Z =0.85*10*0.4=3.4 Q
⑵动作时限
距离保护 ?段的动作时限是由保护装置的继电器固有动作时限决定,人为
延时为零,即tI =0s o
3.4.2 距离保护II段的整定计算和校验
(1)动作阻抗:按下列三个条件选择。
①与相邻线路34的保护的 ?段配合
Zset.1 Krei ZAB Kb.minZset.2
式中,取KrIel =0.85, Kr』=0 .8 , Kb.min为保护2的?段末端发生短路时对 保护2而言的最小分支系数。当保护2的?段末端发生短路时,分支系数为:
Kb.min =I 12/I 34 = 1 于是
7
Z
set.1
0.8* (3.4 0.85*1*10) 9.52 Q
(2)动作时间,与相邻保护 2的?段配合,则
t1\"=t 2'+ At=0.5 s
它能同时满足与相邻线路34保护配合的要求。
(3)灵敏性校验:
K sen Z sI]/ Z1, =9.52/3.4=2.8>1.5, 满足要求。 1,2
3.4.3 距离保护III段的整定计算和校验
⑴动作阻抗:按躲开最小负荷阻抗整定;
Kzq=1, Kre=1.15, Krei =0.83 , Kss =1.5, I =1.75KA
ZL min =0.9Ue/1.732I f max=0.9 X35/1.732 X1.75=10.39 Q
ZSet.1 = ( K rel ZLmin )/ ( Kre Kss Kzq)=(0.83*10,39) /(1.5*1.15)=5 Q
⑵动作时间:
断路器1的动作时间为:t1= t1dz+ At=1.5+0.5=2 s 断路器2的动作时间为:t2= 12dz + At=2.0+0.5=2.5 s
取其中较长者,于是,断路器1的动作时间为:t1= t2dz+ At=2.0+0.5=2.5 s
(3)灵敏性校验:
① 本线路末端短路时的灵敏系数为: Ksen
要求。
Zset.1/Z 12=5/0= oo>1.5,满足
第四章距离保护的评价
4.1距离保护的优缺点和应用范围
主要优点:能满足多电源复杂电网对保护动作选择性的要求;阻抗继电 器是同时反应电压的降低和电流的增大而动作的,因此距离保护较电流保护 有较高的灵敏度。其中I段距离保护基本不受运行方式的影响,而R、田段 受系统运行变化的影响也较电流保护要小一些,保护区域比较稳定。
主要缺点:不能实现全线瞬动。对双侧电源线路,将有全线的30 %〜40 %的第n段时限跳闸,这对稳定有较高要求的超高压远距离输电系统来说是 不能接受的。阻抗继电器本身较长复杂,还增设了振荡闭锁装置,电压断线 闭锁装置,因此距离保护装置调试比较麻烦,可靠性也相对低些。
应用范围:对不要求全线速动的线路,可作为主保护,否则,可作为相 间或接地故障的后备保护。
第五章设计心得
本次设计是针对35KV输电线路在双回路情况下进行的分析计算和整定 的。在进行设计时首先要设计线路图。然后根据设计要求进行距离保护的整 定,并且对其进行灵敏度较验。
我认为,在这次的课程设计中,在收获知识的同时,还收获了阅历,收 获了成熟,在此过程中,我通过查找大量资料,与同学探讨,以及不懈的努 力,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提 高。更重要的是,通过本次课程设计,我学会了很多学习的方法。而这是日 后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践, 再学习、冉实践。
此次课程设计能顺利的完成与同学和老师的帮助是分不开的,在对某些 知识模棱两可的情况下,多亏有同学的热心帮助才可以度过难关;更与老师 的悉心教导分不开,在有解不开的难题时,多亏老师们的耐心指导才使设计 能顺利进行。
很感谢学校和老师给我们安排了这次课程设计,让我真正感受到的是合 作的重要,许多时候都是组员的讨论,老师的指导中的一句半句启发了我, 就出现的让人欣喜的结果;理论知识同样很重要,有些问题都是由于基础知 识掌握不好才出现的。
在此衷心再次感谢老师的悉心教导和各位同学的帮助!
[1]崔家佩.《电力系统继电保护及安全自动整定计算》.北京:中国电力
出版社,2006
[2]张保会,尹项根.《电力系统继电保护》(第二版).北京:中国电力 出版
社,2009
[3]许建安.《继电保护整定计算》.北京:中国水利水电出版社,2003 [4]李光琦.[5]贺家李..北京:中国电力出版社,.中国电力出版社.
2007 《电力系统暂态分析》(第三版)《电力系统继电保护原理》(第四版)
因篇幅问题不能全部显示,请点此查看更多更全内容