摘 要 ................................................................................................................................................................ 2 1 主电路选型和闭环系统的组成 ................................................................................................................. 3
1.1晶闸管结构型式的确定 .................................................................................................................. 3
1.1.1 设计思路 ............................................................................................................................. 3 1.1.2 主电路的确定 ..................................................................................................................... 3 1.2 闭环调速系统的组成 ................................................................................................................. 4 2 调速系统主电路元部件的确定及其参数计算 ......................................................................................... 6
2.1 整流变压器容量计算 ................................................................................................................... 6
2.1.1 次级电压U2 ........................................................................................................................ 6 2.1.2 次级电流I2和变压器容量 .............................................................................................. 8 2.2 晶闸管的电流、电压定额计算 ................................................................................................... 8
2.2.1 晶闸管额定电压UTN .......................................................................................................... 8 2.3 平波电抗器电感量计算 ............................................................................................................... 9 2.4 保护电路的设计计算 ................................................................................................................... 10
2.4.1 过电压保护 ....................................................................................................................... 10 2.4.2 过电流保护 ..................................................................................................................... 14
3 驱动控制电路的选型设计 ....................................................................................................................... 15 4 双闭环系统调节器的动态设计 ............................................................................................................... 16
4.1 电流调节器的设计 ..................................................................................................................... 16
4.1.1 时间常数的确定 ............................................................................................................... 16 4.1.2 电流调节器结构的选择 ................................................................................................... 17
4.1.3 电流调节器的参数计算 ................................................................................................ 17
4.1.4 近似条件校验 ................................................................................................................... 18 4.1.5 电流调节器的实现 ........................................................................................................... 19 4.2 转速调节器的设计 ................................................................................................................... 19
4.2.1 时间常数的确定 ............................................................................................................... 19 4.2.2 转速调节器结构的选择 ................................................................................................... 19 4.2.3 转速调节器的参数计算 ................................................................................................... 19 4.2.4 近似条件校验 ................................................................................................................... 20 4.2.5 转速调节器的实现 ........................................................................................................... 20 4.2.6 校核转速超调量 ............................................................................................................... 20
5仿真 ............................................................................................................................................................ 21
5.1系统仿真框图 ................................................................................................................................ 21 5.2仿真模型的建立 ............................................................................................................................ 22 5.3仿真模型的运行 ............................................................................................................................ 22
5.3.1空载时仿真图形 ................................................................................................................ 24 5.3.2满载时仿真波形 ................................................................................................................ 25
6 总结与体会 ............................................................................................................................................... 26 7参考文献 .................................................................................................................................................... 26
1
摘 要
电力拖动自动控制系统是把电能转换成机械能的装置,它被广泛地应用于一般生产机械需要动力的场合,也被广泛应用于精密机械等需要高性能电气传动的设备中,用以控制位置、速度、加速度、压力、张力和转矩等。直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到应用。晶闸管问世后,生产出成套的晶闸管整流装置,组成晶闸管—电动机调速系统(简称V-M系统),和旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。而转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。
本设计报告首先根据设计要求确定调速方案和主电路的结构型式,主电路和闭环系统确定下来后,重在对电路各元件参数的计算和器件的选型,包括整流变压器、整流元件、平波电抗器、保护电路以及电流和转速调节器的参数计算。最后给出参考资料和设计体会。
2
1 主电路选型和闭环系统的组成
1.1晶闸管结构型式的确定
1.1.1 设计思路
本设计中直流电动机由单独的可调整流装置供电,采用三相桥式全控整流电路作为直流电动机的可调直流电源。通过调节触发延迟角а的大小来控制输出电压Ud的大小,从而改变电动机M的电源电压。由改变电源电压调速系统的机械特性方程式
n=( Ud/CeФ)-(RO+Ra)T/ CeCTФ2 ①
Ud 整流电压 RO 整流装置内阻
由上式可知,改变Ud,即可改变转速n。
1.1.2 主电路的确定
虽然三相半波可控整流电路使用的晶闸管个数只是三相全控桥整流电路的一半,但它的性能不及三相全控桥整流电路。三相全控桥整流电路是目前应用最广泛的整流电路,其输出电压波动小,适合直流电动机的负载,并且该电路组成的调速装置调节范围广(将近50)。把该电路应用于本设计,能实现电动机连续、平滑地转速调节、电动机不可逆运行等技术要求。
三相全控桥整流电路实际上是组成三相半波晶闸管整流电路中的共阴极组和共阳极组串联电路,如图2-1所示,三相全控桥整流电路可实现对共阴极组和共阳极组同时进行控制,控制角都是。在一个周期内6个晶闸管都要被触发一次,触发顺序依次为:VT1VT2VT3VT4VT5VT6,6个触发脉冲相位依次相差60。为了构成一个完整的电流回路,要求有两个晶闸管同时导通,其中一个在共阳极组,另外一个在共阴极组。为此,晶闸管必须严格按
o 3
编号轮流导通。晶闸管VT1与VT4 按A相,晶闸管VT3与VT6 按B相,晶闸管
VT5与VT2 按C相,晶闸管VT1、VT3、VT5接成共阳极组,晶闸管
VT4、VT6、VT2 接成共阴极组。在电路控制下,只有接在电路共阴极组中电位为最高又同时输入触发脉冲的晶闸管,以及接在电路共阳极组中电位最低而同时输入触发脉冲的晶闸管,同时导通时,才构成完整的整流电路。
由于电网电压与工作电压常常不一致,故在主电路前端需配置一个整流变压器,以得到与负载匹配的电压,同时把晶闸管装置和电网隔离,可起到降低或减少晶闸管变流装置对电网和其他用电设备的干扰。
考虑到控制角α增大,会使负载电流断续,并且负载为直流电动机时,由于电流断续和直流的脉动,会使晶闸管导通角θ减少,整流器等效内阻增大,电动机的机械特性变软,换向条件恶化,并且增加电动机的损耗,故在直流侧串接一个平波电抗器,以限制电流的波动分量,维持电流连续。
为了使元件免受在突发情况下超过其所承受的电压电流的侵害,电路中加入了过电压、过电流保护装置。
VT1VT3VT5ABCabcVT4VT6VT2负载 图2-1
1.2 闭环调速系统的组成
开环直流调速系统调节控制电压Uc就可改变电动机的转速。如果负载的生
4
产工艺对运行时的静差率要求不高,这样的开环调速系统都能实现一定范围内的无级调速,但是,对静差率有较高要求时,开环调速系统往往不能满足要求。这时就要采用闭环调速系统。
采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单环系统就难以满足需要。这是就要考虑采用转速、电流双环控制的直流调速系统。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流。二者之间实行嵌套(串联)联接。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器。两个调节器的输出都是带限幅作用的,转速调节器ASR的输出限幅电压Uim*决定了电流给定电压的最大值,电流调节器ACR的输出限幅电压Ucm限制了电力电子电换器的最大输出电压Udm。
5
图2-2 双闭环调速系统的原理框
双闭环直流调速系统动态结构框图如图2-2所示,速度调节器根据转速给
定电压Un和速度反馈电压Un的偏差进行调节,其输出是电流的给定电压Ui(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。电流调节器根据电流给定电压Ui和电流反馈电压Ui的偏差进行调节,其输出是功率变换器件(三相整流装置)的控制信号Uc。通过Uc电压进而调节整流装置的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,由TeTLJdn/dt可知,只要Te与TL不相等那么转速n会相应的变化。整个过程到电枢电流产生的转矩与负载转矩达到平衡后,转速达到稳定。
2 调速系统主电路元部件的确定及其参数计算
2.1 整流变压器容量计算
2.1.1 次级电压U2
为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压U2只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压U2。影响U2值的因素有:
(1)U2值的大小首先要保证满足负载所需求的最大直流值Ud
(2)晶闸管并非是理想的可控开关元件,导通时有一定的管压降,用UT表
6
示
(3)变压器漏抗的存在会产生换相压降
(4)平波电抗器有一定的直流电阻,当电流流经该电阻时就要产生一定的电压降
(5)电枢电阻的压降
综合以上因素得到的U2精确表达式为:
A= Ud0/U2,表示当控制角α=0°时,整流电压平均值与变压器次级相电压有效值之比。
B=Udα/Ud0,表示控制角为α时和α=00时整流电压平均值之比。
UK%—变压器的短路电压百分比,100千伏安以下的变压器取UK%=5,100~1000千伏安的变压器取UK%=5~8
ε为电网电压波动系数。根据规定,允许波动+5%~-10%,即ε=1.05~0.9 C是与整流主电路形式有关的系数为
INRraUN,
表示电动机电枢电路总电阻R的标么值,对容量为15~150KW的电动机,通常ra=0.08~0.04。
nUT—表示主电路中电流经过几个串联晶闸管的管压降
对于本设计:为了保证电动机负载能在额定转速下运转,计算所得的U2应有一定的裕量,根据经验所知,公式中的控制角应取300为宜。
3 ε=0.9,A=2.34,B=coscos300=2,C=0.5,UK%=5
7
ra2200.120.06440
4400.061.51121352.340.90.51.52100262.35V
取U2=270V。
2.1.2 次级电流I2和变压器容量
I2=KI2·Id , KI2为各种接线形式时变压器次级电流有效值和负载电流平均值之比。
对于本设计KI2取0.816,且忽略变压器一二次侧之间的能量损耗,故
I2=0.816×220=179.52A
S=1/2(S1+S2)=m1U1I1=m2U2I2=3×270×179.52=145.41KVA
2.2 晶闸管的电流、电压定额计算
2.2.1 晶闸管额定电压UTN
晶闸管额定电压必须大于元件在电路中实际承受的最大电压Um,考虑到电网电压的波动和操作过电压等因素,还要放宽2~3倍的安全系数,即按下式选取
UTN=(2~3)UM
式中系数2~3的取值应视运行条件,元件质量和对可靠性的要求程度而定。 对于本设计,UM=6U2,
故计算的晶闸管额定电压为
8
UTN=(2~3)6U2=(2~3)6×270=1323~1984V,
取1800V。
2.2.2 晶闸管额定电流IT(AV)
为使晶闸管元件不因过热而损坏,需要按电流的有效值来计算其电流额定值。即必须使元件的额定电流有效值大于流过元件实际电流的最大有效值。可按下式计算:
IT(AV)=(1.5~2)KfbIMAX,
式中计算系数Kfb=Kf/1.57Kb由整流电路型式而定,Kf为波形系数,Kb为共阴极或共阳极电路的支路数。当α=00时,三相全控桥电路Kfb=0.368
故计算的晶闸管额定电流为
IT(AV)=(1.5~2)KfbIMAX =(1.5~2) ×0.368×(220×1.5)=182.16~242.88A
取200A。
2.3 平波电抗器电感量计算
由于电动机电枢和变压器存在漏感,因而计算直流回路附加电抗器的电感量时,要从根据等效电路折算后求得的所需电感量中,扣除上述两种电感量。 电枢电感量LM按下式计算
KDUN103LM(mH)2PnNIN
P—电动机磁极对数
KD—计算系数,对一般无补偿电机:KD=8~12 对于本设计,P=2,KD=10
则对于本设计,
KDUN10310440103LM2.77(mH)2PnNIN221800220
整流变压器漏电感折算到次级绕组每相的漏电感LB按下式计算
LBKBUK%U2(mH)100Id ④
9
U2—变压器次级相电压有效值 Id—晶闸管装置直流侧的额定负载电流 KB—与整流主电路形式有关的系数 对于本设计,KB=3.9,UK%=5
则可求得,
LBKBUK%U252703.90.24(mH)100Id100220
由此看出,变流器在最小输出电流Idmin时仍能维持电流连续时电抗器电感量L按下式计算
LKU2Idmin
K是与整流主电路形式有关的系数,三相全控桥K取0.693
LKU20.69327017.01(mH)Idmin2205%
使输出电流连续的临界电感量
L平=L-LM-2LB=17.01-2.77-2×0.24=13.76(mH)
电抗器电感量应大于15 mH。
2.4 保护电路的设计计算
2.4.1 过电压保护
①交流侧过电压的保护
10
图3-1
采用RC过电压抑制电路如图3-1所示,在变压器次级并联RC电路,以吸收变压器铁心的磁场释放的能量,并把它转换为电容器的电场能而存储起来,串联电阻是为了在能量转换过程中可以消耗一部分能量并且抑制LC回路可能产生的震荡。
本设计采用三相全控桥整流电路,变压器的绕组为△—Y联结,阻容保护装置采用三角形接法,故可按下式计算阻容保护元件的参数
C1ST6i0%2(F)3U2
电容C的耐压 UC1.532U2(V)
U22R32.3ST 电阻R的功率为
UK%()i0%
PR(3~4)IC2R(W) IC2fCUC106(A)
式中ST—变压器每相平均计算容量(VA)
U2—变压器次级相电压有效值(V)
i0%—励磁电流百分比,当ST≤几百伏安时i0%=10,当ST≥1000伏安时
i0%=3~5
11
UK%—变压器的短路电压百分比
IC,UC—当R正常工作时电流电压的有效值(A,V) 对于本设计,UK%=5, i0%=5,ST=145.41/3=48.47KVA (1)电容器的计算
1ST48.47103C6i0%2256.6(F)23U2270
取7F;
UC1.532U21.56270992(V)
取1200V;
选择C=7μF,耐压1200V的金属化纸介电容。 (2)电阻值的计算
U22R32.3STUK%27026.9i0%48.47103510.38()5
取R=20。
RC支路电流IC近似为
IC2fCUC10623.1450662701061.246(A)
电阻R的功率为
PR(3~4)IC2R(3~4)1.246222103~136(W)
②直流侧的过电压保护
整流器直流侧开断时,如直流侧快速开关断开或桥臂快熔熔断等情况,也会在A、B之间产生 过电压,如图3-2所示本设计用非线性元气件抑制过电压,在A、B之间接入的是压敏电阻,这是由氧化锌、氧化铋等烧结制成的非线性电阻元件,它具有正反向相同的很陡的伏安特性,击穿前漏电流为微安数量级,
12
损耗很小,过电压时(击穿后)则能通过达数千安的浪涌电流, 所以抑制电流能力很强。
图3-2
压敏电阻的额定电压U1mA的选取可按下式计算
U1mA1.8~2.2Ud0(V)
Ud0为晶闸管控制角=00时直流输出电压
对于本设计:
U1mA1.8~2.2Ud01.8~2.22.342701138~1390(V)
通常用于中小功率整流器操作过电压保护时,压敏电阻通流容量可选择(3~5)KA
③晶闸管换相过电压保护
如图3-3,在晶闸管元件两端并联RC电路,起到晶闸管换相过电压的保护。串联电阻R的作用一是阻尼LTC回路的震荡,二是限制晶闸管开通瞬间的损耗且可减小电流上升率di/dt。R、C值可按经验数据选取,对于本设计晶闸管额定电流为220A,故C可取0.3F,R可取20。
13
图3-3
2.4.2 过电流保护
在电路中串接的器件是快速熔断器,这是一种最简单有效而应用最普遍的过电流保护元件,其断流时间一般小于10ms,按图3-4接法熔断器与每一个晶闸管元件相串联,可靠的保护每一个晶闸管元件。
熔断器的额定电压、电流可按下式计算
额定电压URN:不小于线路正常工作电压的方均根值 额定电流:IRNKiKaIR(A) Ki—电流裕度系数,取Ki=1.1~1.5
Ka—环境温度系数,取
Ka=1~1.2
IR—实际流过快熔的电流有效值
对于本设计:因U2=270V,取URN=550V;
IR11Id220127.17A33
IRNKiKaIR1.51.2127.17119(A)
取
IRN=120A。 因而可选取RS3型550V/120A的快熔。
14
图3-4
3 驱动控制电路的选型设计
由于集成触发电路不仅成本低、体积小,而且还有调式容易、使用方便等
优点,故本设计采用KJ041集成触发电路。
KJ041为6路双脉冲形成器,它是三相全空桥式电路的触发器,它具有双脉冲形成和电子开关封锁等功能。KJ041实用电路如图4-1所示,移相触发器输出脉冲加到该器件的1~6端,器件内的输入二极管完成“或”功能,形成补脉冲,该脉冲经放大后分6路输出。当控制端7接逻辑“0”电平时,器件内的电子开关断开,各路输出触发脉冲。
采用KJ041集成触发电路的同步电压应滞后于主电路电压180度。本设计主电路整流变压器采用D,y-11联结,同步变压器采用D,y-11,5联结。这时,同步电压选取的结果见表4-1。
15
图4-1同步变压器和整流变压器接法
晶闸管 主电路电压 同步电压 VT1 +Ua -Usa VT2 -Uc +Usc VT3 +Ub -Usb VT4 -Ua +Usa VT5 +Uc -Usc VT6 -Ub +Usb 表4-1 各晶闸管的同步电压
4 双闭环系统调节器的动态设计
4.1 电流调节器的设计
4.1.1 时间常数的确定
系统电磁时间常数Tl:由上可知
,
Tl0.017s
整流电路形式 最大失控时间平均失控时间Ts/ms 16
Tsmax/ms 单相半波 单相桥式
表5-1 各种整流电路的失控时间(f=50Hz)
20 10 6.67 3.33 10 5 3.33 1.67 三相半波 三相桥式 整流装置滞后时间常数Ts:按表5-1,三相桥式电路的平均失控时间为Ts=0.0017s。
电流滤波时间Toi:三相桥式电路每个波头的时间是3.33ms,为了基本滤平波头,应有(1-2)Toi=3.33s,因此取Toi=2ms=0.002s。 电流环小时间常数之和T∑i:按小时间常数近似处理,取T∑i=Ts+Toi=0.0037s。
4.1.2 电流调节器结构的选择
根据设计要求δi<5%,并保证稳态电流无差,可按典型Ⅰ型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI型电流调节器,其传递函数为
WACRSKiis1is
Ki—电流调节器的比例系数,ii—电流调节器的超前时间常数。 检查对电源电压的抗扰性能:
Tl Ti=0.017/0.0037=4.59
对照典型Ⅰ型系统动态抗扰性能,各项指标都是可以接受的。
4.1.3 电流调节器的参数计算
17
电流调节器超前时间常数ηi=Tl=0.017s。
电流开环增益:要求δi<5%时,按表5-2应取KIT∑i=0.5,因此KI=0.5/T∑i=0.5/0.0037=135.1s-1。取Ks=48,而电流反馈系数β=10V/1.5IN=10/(1.5×30)=0.22V/A于是,ACR的比例系数为
Ki参数关系KT 阻尼比ξ 超调量δ 上升时间tr 峰值时间tp 相对稳定裕度γ 截止频率ωc KIiiRKs0.25 1.0 0% ∞ ∞ 76.3° 0.243/T 135.10.0171.50.39
400.220.39 0.50 0.8 1.5% 6.6T 8.3T 69.9° 0.707 4.3% 4.7T 6.2T 65.5° 0.455/T 0.69 0.6 9.5% 3.3T 4.7T 59.2° 0.596/T 1.0 0.5 16.3% 2.4T 3.6T 51.8° 0.786/T 0.367/T 表5-2 典型Ⅰ型系统动态跟随性能指标和频域指标与参数的关系
4.1.4 近似条件校验
电流环截止频率:ωci=KI=135.1s-1。
晶闸管整流装置传递函数的近似条件:1/(3Ts)=1/(3×0.0017)=196.1s-1>ωci,满足近似条件。
忽略反电动势变化对电流环动态影响的条件:
311386.95 TmTl0.07s0.017s 所得结果小于ωci,满足近似条件。 电流环小时间常数近似处理条件:
18
1111180.8S13TsToi30.0017s0.002s
所得结果大于ωci,满足近似条件。
4.1.5 电流调节器的实现
按所用运算放大器取R0=40kΩ,各电阻和电容值为 Ri=KiR0=0.39×40=15.6kΩ,取15 kΩ;
Ci=ηi/Ri=0.017/(15×103)≈1.13×10-6F=1.7μF,取1.4μF; Coi=4Toi/R0=4×0.002/40000=0.2×10-6μF,取0.2μF。
按照上述参数,电流环可以达到的动态跟随性能指标为δi=4.3%<5%(见表5-2),满足设计要求。
4.2 转速调节器的设计
4.2.1 时间常数的确定
电流环等效时间常数1/KI:已取KIT∑i=0.5,则1/KI=2T∑i=2×0.0037=0.0074s。 转速滤波时间常数Ton:根据所用测速发电机纹波情况,取Ton=0.01s。
转速环小时间常数T∑n:按小时间近似处理, T∑n=1/KI+Ton=0.0074+0.01
=0.0174s
4.2.2 转速调节器结构的选择
按照设计要求,选用典型Ⅱ型系统的PI调节器,其传递函数为
WASRSKnns1ns
4.2.3 转速调节器的参数计算
按跟随和抗扰性能都较好的原则,取h=5,则ASR的超前时间常数为ηn=hT∑n=
5×0.0174=0.087s,可求得转速环开环增益
19
KNh12h2Tn26s2396.4s222250.0174
因为Ce=(UN-INRa)/nN=(230-30×1.0)/1450=0.14V•min/r,α=10V/ nN =10/1450=0.0067V•r/min,于是可得ASR的比例系数为
Kn(h1)CeTm60.220.140.077.4
2hRTn250.00671.50.01744.2.4 近似条件校验
由式K=ω1ωc得转速环截止频率为
wcnKNKNn396.40.087s134.5s1w1。
电流环传递函数简化条件
1KI1135.11s63.7s1wcn3Ti30.0037,
满足简化条件,转速环小时间常数近似处理条件
1KI1135.11s38.7s1wcn3Ton30.01 满足近似条件。
,
4.2.5 转速调节器的实现
取R0=40kΩ,则Rn=KnR0=7.4×40=296kΩ,取300kΩ; Cn=ηn/Rn=0.087/(300×103)≈0.29×10-6F=0.29μF,取0.3μF;
Con=4Ton/R0=4×0.01/(40×103)=1×10-6=1μF,取1μF。
4.2.6 校核转速超调量
当h=5时,由表5-3查得,δn=37.6%,不能满足设计要求。实际上,由于表四是按线性系统计算的,而突加阶跃给定时,ASR饱和,不符合线性系统的前提,应该按ASR退饱和的情况重新计算超调量。 h 3 4 5 6 7 8 9 10 20
δ tr/T ts/T k 52.6% 2.40 12.15 3 43.6% 2.65 11.65 2 37.6% 2.85 9.55 2 33.2% 3.00 10.45 1 29.8% 3.10 11.30 1 27.2% 3.20 12.25 1 25.0% 3.30 13.25 1 23.3% 3.35 14.20 1 表5-3 典型Ⅱ型系统阶跃输入跟随性能指标(按Mmin准则确定参数关系)
设理想空载起动时,负载系数z=0,已知λ=1.5,IN=220A,nN=1800r/min,Ce=0.14V•min/r,Tm=0.07s,T∑n=0.0174s。当h=5时,由表5-4查得,ΔCmax/Cb=81.2%,而调速系统开环机械特性的额定稳态速降ΔnN=INR∑/ Ce=230×1.5/0.14=2464.3 r/min,代入式
maxbmaxNnnCn*2C(Z)n*TbbmCnCnT
计算得:
ζn=281.2%1.5 能满足设计要求。
h ΔCmax/Cb tm/T tv/T 3 72.2% 2.45 13.60 4 77.5% 2.70 10.45 5 81.2% 2.85 8.80 6 84.0% 3.00 12.95 7 86.3% 3.15 16.85 8 88.1% 3.25 19.80 9 89.6% 3.30 22.80 10 90.8% 3.40 25.85 2464.30.01741.03%8% 14500.07表5-4 典型Ⅱ型系统动态抗扰性能指标与参数的关系
5仿真
5.1系统仿真框图
图6-1为双闭环直流调速系统仿真框图
21
图6-1 双闭环调速系统的动态结构图
Toi为电流反馈滤波时间常数 Ton为转速反馈滤波时间常数
5.2仿真模型的建立
(1)打开模型编辑窗口:通过单击SIMULINK工具栏中新模型的图标或选择File——New——Modle菜单项实现。
(2)复制相关模块:双击所需子模块库图标,则可以打开它,以 选中所需的子模块,拖入模型编辑窗口。
(3)修改模块参数:双击模块图案,则出现关于该图案的对话框,通过修改对话框内容来设定模块的参数。
(4)模块连接:以鼠标左键单击起点模块输出端,拖动鼠标至终点模块输入端,则在两模块间产生→线。当一个信号要分送到不同模块的多个输入端时,需要绘制分支线,通常可把鼠标移到期望的分支线的起点处,按下鼠标的右键,看到光标变为十字后,拖动鼠标直至分支线的终点处,释放鼠标按钮,就完成了分支线的绘制。
5.3仿真模型的运行
如图示6-2为仿真模型
22
23
图6-2转速环仿真模型
5.3.1空载时仿真图形
(1)设置负载电流为0A; (2)启动仿真:点击果如下图6-3:
按钮,仿真启动,双击示波器就可以发现仿真结
图6-3转速环空载高速起动波形图
24
观察波形可发现ASR调节器经过了不饱和,饱和,退饱和三个阶段,最终稳定与给定转速。电流最终稳定为0A。
5.3.2满载时仿真波形
(1)把负载电流设置为136A,满载启动
(2)按照前面步骤启动模型,波形得到如图6-4:
图6-4 满载时波形图
(3)根据图形发现启动时间延长了,退饱和超调量减小了。起动过程的三个阶段都能很清楚的看到。电流最后稳定在额定值。
25
7 总结与体会
通过本次对一个V-M双闭环不可逆直流调速系统课程设计使我对电力电子技术、电力拖动自动控制系统有了进一步的了解与认识。对所学内容有了更深刻的印象,并且进一步认识到工程设计时与实际相联系的重要性,比如在计算元件参数时计算出来的值往往与实际生产参数不符,这就需要根据实际情况对参数进行取舍。另外,做设计时信息十分重要,我运用文件检索工具查阅了大量的相关资料,这对设计大有益处。本次课程设计为对我将来的毕业设计和工作需要打下了扎实的基础。
通过本次的课程设计,我学到了很多东西。我可以将我所学理论知识很好的运用到了实际当中,在具体的设计过程中,真正做到了学以致用,并使自己的实际操作能力得到了很大的提高。
设计过程中运用了很多的知识,因此如何将知识系统化就成了关键。如本设计中用到了工厂供电的绝大多数的基础理论和设计方案,因此在设计过程中侧重了知识系统化能力的培养,为今后的工作和学习打下了很好的理论基础。此次设计过程中遇到了很多的困难,为了解决问题,激发了对获取知识的寻求,自学能力得到提高。
本次课设应该感谢学院的安排,感谢各位指导老师的精心指导;让我们在学习课本知识的同时,能够有这样良好的机会实践,加深对所学理论知识的理解,掌握工程设计的方法。通过这次课程设计,我深深懂得要不断的把所学知识学以致用,还需通过自身不断的努力,不断提高自己分析问题,解决问题的能力,为我们以后就业打下良好基础。
26
参考文献
[1] 王兆安,黄俊 主编 <<电力电子技术>>第四版,机械工业出版社,2003,P1~P214 [2] 陈伯时,<<电力拖动自动控制系统>>——运动控制系统,第三版,机械工业出版社,
2003,P2~P144
[3] 莫正康,电力电子应用技术,第三版,机械工业出版社,2000 [4] 张东力、陈丽兰、仲伟峰,直流拖动控制系统,机械工业出版社,1999 [5] 朱仁初、万伯任,电力拖动控制系统设计手册,机械工业出版社,1994
[6] 机械工程手册、电机工程手册编辑委员会,电机工程手册,第二版,基础卷(二),机
械工业出版社,1996
27
皖 西 学 院
课程设计报告书
系 别: 专 业: 学 生 姓 名: 课程设计题目:
起 迄 日 期: 课程设计地点: 指 导 教 师:
机械与电子工程学院 电气工程及自动化
夏明初
学号: 2012011039
V-M双闭环不可逆直流调速系统设计
6月 22 日 ~ 6月28 日
机电楼 俞 鹤
28
29
因篇幅问题不能全部显示,请点此查看更多更全内容