一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知三个数a1,a1,a5成等比数列,其倒数重新排列后为递增的等比数列{an}的前三 项,则能使不等式a1a2an11a1a21成立的自然数的最大值为( ) anx20},则A(CRB)等于( ) x1A.9 B.8 C.7 D.5 2. 已知全集为R,且集合A{x|log2(x1)2},B{x|A.(1,1) B.(1,1] C.[1,2) D.[1,2]
【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.
3. ABC的外接圆圆心为O,半径为2,OAABAC为零向量,且|OA||AB|,则CA在BC方向上的投影为( )
A.-3 B.3 C.3 D.3 4. 如图在圆O中,AB,CD是圆O互相垂直的两条直径,现分别以OA,OB,OC,OD为直径作四个 圆,在圆O内随机取一点,则此点取自阴影部分的概率是( )
A
D
O B
C
A.
1 B.
11111 C. D. 2242
【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
5. 已知向量=(1,2),=(x,﹣4),若∥,则x=( ) A. 4 B. ﹣4 C. 2 D. ﹣2 6. 已知集合
,则
A0或
B0或3
第 1 页,共 16 页
C1或D1或3
7. 函数f(x)在定义域R上的导函数是f'(x),若f(x)f(2x),且当x(,1)时,(x1)f'(x)0,设af(0),bf(2),cf(log28),则( )
A.abc B.abc C.cab D.acb
yx2
8. 已知实数x,y满足不等式组xy4,若目标函数zymx取得最大值时有唯一的最优解(1,3),则
3xy5
实数m的取值范围是( )
A.m1 B.0m1 C.m1 D.m1
【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.
9. 设{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )
A.1 B.2 C.4 D.6 10.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )
A.4 能力.
B.25
C. 5
D. 225
【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算
x2y211.已知双曲线C:221(a0,b0),F1,F2分别在其左、右焦点,点P为双曲线的右支上
abPM所在直线与轴的交点坐标为(1,0),与双曲线的一条渐 的一点,圆M为三角形PF1F2的内切圆,
近线平行且距离为2,则双曲线C的离心率是( ) 2A.5 B.2 C.2 D.12.在复平面内,复数A.3i
2 2z所对应的点为(2,1),i是虚数单位,则z( ) 1i B.3i C.3i D.3i
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
第 2 页,共 16 页
13.已知
a、b、c分别是ABC三内角A、B、C的对应的三边,若csinAacosC,则
coBs(3)的取值范围是___________. 43sinA【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.
14.如图,在三棱锥PABC中,PAPBPC,PAPB,PAPC,△PBC为等边三角形,则PC 与平面ABC所成角的正弦值为______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 15.如图所示,圆C中,弦AB的长度为4,则AB×AC的值为_______.
CAB
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 16.直线x2yt0与抛物线y216x交于A,B两点,且与x轴负半轴相交,若O为坐标原点,则
OAB面积的最大值为 . 【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.
三、解答题(本大共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)
17.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22列联表: 男 女 患心肺疾病 患心肺疾病 20 10 5 15 合计 25 25 第 3 页,共 16 页
合计 30 20 50 (1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人? (2)在上述抽取的6人中选2人,求恰有一名女性的概率.
(3)为了研究心肺疾病是否与性别有关,请计算出统计量K,判断心肺疾病与性别是否有关? 下面的临界值表供参考: 2P(K2k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 n(adbc)22(参考公式:K,其中nabcd)
(ab)(cd)(ac)(bd)
18.(本小题满分12分)
ABC的内角A,B,C所对的边分别为a,b,c,m(sinB,5sinA5sinC),
n(5sinB6sinC,sinCsinA)垂直. (1)求sinA的值;
(2)若a22,求ABC的面积S的最大值.
19.(本小题满分10分)直线l的极坐标方程为θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲线C1的参数方
x=cos t程为(t为参数),圆C2的普通方程为x2+y2+23x=0.
y=1+sin t
(1)求C1,C2的极坐标方程;
(2)若l与C1交于点A,l与C2交于点B,当|AB|=2时,求△ABC2的面积.
第 4 页,共 16 页
ABCD,AB//DC, 20.(本小题满分12分)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A^底面AB^AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明:B1C1^面CEC1;
(II)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为2,求线段AM的长. 6BB1CAEC1A1D
D1
21.(本小题满分10分)选修41:几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B,C两点,弦CD//AP,AD,BC相 交于点E,F为CE上一点,且DE2EFEC. (Ⅰ)求证:EDFP;
(Ⅱ)若CE:BE3:2,DE3,EF2,求PA的长.
第 5 页,共 16 页
22.(本小题满分10分)选修4-1:几何证明选讲.
如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的(1)求证:CD=DA;
(2)若CE=1,AB=2,求DE的长.
第 6 页,共 16 页
切线与AC交于D.
鹿邑县高级中学2018-2019学年上学期高三期中数学模拟题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】C 【解析】
试题分析:因为三个数a1,a1,a5等比数列,所以a1a1a5,a3,倒数重新排列后恰
2
好为递增的等比数列{an}的前三项,为,11111,,公比为,数列是以为首项,为公比的等比数列,则8422an不等式a1a2an11a1a211n8112n12,整理,得等价为81an12122n27,1n7,nN,故选C. 1
考点:1、等比数列的性质;2、等比数列前项和公式. 2. 【答案】C
3. 【答案】B 【解析】
考点:向量的投影. 4. 【答案】C
【解析】设圆O的半径为2,根据图形的对称性,可以选择在扇形OAC中研究问题,过两个半圆的交点分别向OA,OC作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
1,扇形2OAC的面积为,所求概率为P25. 【答案】D
【解析】: 解:∵∥,
111. 2第 7 页,共 16 页
∴﹣4﹣2x=0,解得x=﹣2. 故选:D. 6. 【答案】B 【解析】
,故
或
。
7. 【答案】C 【解析】
或
,,解得
或
或
,又根据集合元素的互异性
,所以
考点:函数的对称性,导数与单调性.
可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数f(x)满足:
【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不
f(ax)f(ax)或f(x)f(2ax),则其图象关于直线xa对称,如满足f(2mx)2nf(x),
则其图象关于点(m,n)对称. 8. 【答案】C
第 8 页,共 16 页
9. 【答案】B 【解析】
试题分析:设an的前三项为a1,a2,a3,则由等差数列的性质,可得a1a32a2,所以a1a2a33a2,
a1a38a12a16解得a24,由题意得,解得或,因为an是递增的等差数列,所以
a6a2aa123313a12,a36,故选B.
考点:等差数列的性质. 10.【答案】B
11.【答案】C 【解析】
试题分析:由题意知1,0到直线bxay0的距离为线,离心率为2.故本题答案选C. 1 考点:双曲线的标准方程与几何性质.
【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造a,b,c的关系,处理方法与椭圆相同,但需要注意双曲线中a,b,c与椭圆中a,b,c的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出a,c的值,可得;(2)建立a,b,c的齐次关系式,将用a,c表示,令两边同除以或a化为的关系式,解方程或者不等式求值或取值范围.
22b2,那么,得ab,则为等轴双曲2222ba12.【答案】D
【解析】解析:本题考查复数的点的表示与复数的乘法运算.
z2i,z(1i)(2i)3i,选D. 1i二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】(1, 【
62) 2解
析
】
第 9 页,共 16 页
14.【答案】 【
21 7解
析
】
15.【答案】8
第 10 页,共 16 页
16.【答案】【
5123 9解
析
】
三、解答题(本大共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)
17.【答案】
【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.
第 11 页,共 16 页
18.【答案】(1)【解析】
4;(2)4. 5
试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sinA,sinB,sinC的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得cosA,由同角关系得sinA;(2)由于已知边及角A,因此在(1)中等式bca2226bc1中由基本不等式可求得bc10,从而由公式 SbcsinA52可得面积的最大值.
试题解析:(1)∵m(sinB,5sinA5sinC),n(5sinB6sinC,sinCsinA)垂直, ∴mn5sinB6sinBsinC5sinC5sinA0,
222第 12 页,共 16 页
考点:向量的数量积,正弦定理,余弦定理,基本不等式.111] 19.【答案】
x=cos t
【解析】解:(1)由C1:(t为参数)得
y=1+sin t
x2+(y-1)2=1, 即x2+y2-2y=0,
∴ρ2-2ρsin θ=0,即ρ=2sin θ为C1的极坐标方程, 由圆C2:x2+y2+23x=0得
ρ2+23ρcos θ=0,即ρ=-23cos θ为C2的极坐标方程. (2)由题意得A,B的极坐标分别为 A(2sin α,α),B(-23cos α,α). ∴|AB|=|2sin α+23cos α| π
=4|sin(α+)|,α∈[0,π),
3π1
由|AB|=2得|sin(α+)|=,
32π5π
∴α=或α=.
26
ππ5π当α=时,B点极坐标(0,)与ρ≠0矛盾,∴α=,
2265π此时l的方程为y=x·tan(x<0),
6
第 13 页,共 16 页
即3x+3y=0,由圆C2:x2+y2+23x=0知圆心C2的直角坐标为(-3,0), |3×(-3)|3
∴C2到l的距离d==,
2
(3)2+321
∴△ABC2的面积为S=|AB|·d
2
133=×2×=. 222
3
即△ABC2的面积为. 220.【答案】
【解析】【命题意图】本题考查直线和平面垂直的判定和性质、直线和平面所成的角、两点之间的距离等基础知识,意在考查空间想象能力和基本运算能力
第 14 页,共 16 页
zBB1CAEC1A1yDxD1
21.【答案】
【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.
22.【答案】
【解析】解:(1)证明:
如图,连接AE,
第 15 页,共 16 页
∵AB是⊙O的直径, AC,DE均为⊙O的切线, ∴∠AEC=∠AEB=90°, ∠DAE=∠DEA=∠B, ∴DA=DE.
∠C=90°-∠B=90°-∠DEA=∠DEC, ∴DC=DE, ∴CD=DA.
(2)∵CA是⊙O的切线,AB是直径, ∴∠CAB=90°,
由勾股定理得CA2=CB2-AB2, 又CA2=CE×CB,CE=1,AB=2, ∴1·CB=CB2-2,
即CB2-CB-2=0,解得CB=2, ∴CA2=1×2=2,∴CA=2. 由(1)知DE=12CA=2
2,
所以DE的长为2
2
.
第 16 页,共 16 页
因篇幅问题不能全部显示,请点此查看更多更全内容