普通高等学校招生全国统一考试(全国卷2数学)
理科数学(必修+选修Ⅱ)
第Ⅰ卷
一、选择题
1.设集合M{mZ|3m2}, N{nZ|1≤n≤3},则MIN( ) A.01,
B.101,,
C.0,1,2
3
D.101,,,2
2.设a,bR且b0, 若复数(abi)是实数, 则( ) A.b3a 3.函数f(x)22B.a3b
22C.b9a
22D.a9b
221x的图像关于( ) xA.y轴对称 B. 直线yx对称 C. 坐标原点对称 D. 直线yx对称
1)alnx,b2lnx,clnx, 则( ) 4.若x(e,,A.aB.cC. bD. b x≥2.A.2 B.4 C.6 D.8 6.从20名男同学, 10名女同学中任选3名参加体能测试, 则选到的3名同学中既有男同学又有女同学的概率为( ) A. 9 29B. 10 29C. 19 29D. 20 297.(1x)6(1x)4的展开式中x的系数是( ) B.3 C.3 D.4 A.4 8.若动直线xa与函数f(x)sinx和g(x)cosx的图像分别交于M,N两点, 则MN的最大值为( ) A.1 B.2 C.3 D.2 x2y21的离心率e的取值范围是( ) 9.设a1, 则双曲线2a(a1)22) A.(2,B.(2,5) 5) C.(2, D.(2,5) 10.已知正四棱锥SABCD的侧棱长与底面边长都相等, E是SB的中点, 则AE,SD所成的角的余弦值为( ) 第1页(共11页) A. 1 3B.2 3C.3 3D. 2 311.等腰三角形两腰所在直线的方程分别为xy20与x7y40, 原点在等腰三角形的底边上, 则底边所在直线的斜率为( ) A.3 B.2 C.1 3D.1 212.已知球的半径为2, 相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2, 则两圆的圆心距等于( ) A.1 B.2 C.3 D.2 第Ⅱ卷 二、填空题:本大题共4小题, 每小题5分, 共20分.把答案填在题中横线上. 13.设向量a(1,,2)b(2,3), 若向量ab与向量c(4,7)共线, 则 . 14.设曲线ye在点(0,1)处的切线与直线x2y10垂直, 则a . 15.已知F是抛物线C:y4x的焦点, 过F且斜率为1的直线交C于A,B两点.设 2axFAFB, 则FA与FB的比值等于 . 16.平面内的一个四边形为平行四边形的充要条件有多个, 如两组对边分别平行, 类似地, 写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① ; 充要条件② . (写出你认为正确的两个充要条件) 三、解答题:本大题共6小题, 共70分.解答应写出文字说明, 证明过程或演算步骤. 17.(本小题满分10分) 在△ABC中, cosB(Ⅰ)求sinA的值; (Ⅱ)设△ABC的面积S△ABC54, cosC. 13533, 求BC的长. 218.(本小题满分12分) 购买某种保险, 每个投保人每年度向保险公司交纳保费a元, 若投保人在购买保险的一年度内出险, 则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险, 且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为 10.999104. (Ⅰ)求一投保人在一年度内出险的概率p; (Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元, 为保证盈利的期望不小于0, 求每位投保人应交纳的最低保费(单位:元). 19.(本小题满分12分) 第2页(共11页) 如图, 正四棱柱ABCDA1B1C1D1中, AA12AB4, 点E在CC1上且 C1E3EC. 平面BED; (Ⅰ)证明:AC1(Ⅱ)求二面角A1DEB的大小. 20.(本小题满分12分) A1 D1 C1 B1 E D A B C n*设数列an的前n项和为Sn.已知a1a, an1Sn3, nN. n(Ⅰ)设bnSn3, 求数列bn的通项公式; (Ⅱ)若an1≥an, nN, 求a的取值范围. *21.(本小题满分12分) 设椭圆中心在坐标原点, A(2,,0)B(0,1)是它的两个顶点, 直线ykx(k0)与AB相交于点D, 与椭圆相交于E、F两点. uuuruuur(Ⅰ)若ED6DF, 求k的值; (Ⅱ)求四边形AEBF面积的最大值. 22.(本小题满分12分) 设函数f(x)sinx. 2cosx(Ⅰ)求f(x)的单调区间; (Ⅱ)如果对任何x≥0, 都有f(x)≤ax, 求a的取值范围. 第3页(共11页) 2008年参考答案和评分参考 一、选择题 1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 部分题解析:2. 设a,bR且b0, 若复数(abi)3是实数, 则( ) A.b3a 22B.a3b 22C.b9a 22D.a9b, 22bi3ag(bi)2(bi)3 (←考查和的立方公式, 或二项式定理) 解:(abi)3a33a2gb)(3agbb)i (←考查虚数单位i的运算性质) (a3ag3223 R (←题设条件) ∵a,bR且b0 bb0 (←考查复数与实数的概念) ∴ 3ag ∴ b3a. 故选A. 22236. 从20名男同学, 10名女同学中任选3名参加体能测试, 则选到的3名同学中既有 男同学又有女同学的概率为( ) A. 9 29B. 10 29C. 19 29D. 20 29思路1:设事件A:“选到的3名同学中既有男同学又有女同学”, 其概率为: 2112C20C10C20C10 (←考查组合应用及概率计算公式) P(A)3C302019109102021 (←考查组合数公式) 2130292832110191010109 (←考查运算技能) 10291420 29故选D. 思路2:设事件A:“选到的3名同学中既有男同学又有女同学”, 事件A的对立事件为A:“选到的3名同学中要么全男同学要么全女同学” 其概率为: P(A)1P(A) (←考查对立事件概率计算公式) 第4页(共11页) 33C20C10 1 (←考查组合应用及概率计算公式) 3C30201981098321321(←考查组合数公式) 13029283212019181098 (←考查运算技能) 30292820 29故选D. 12.已知球的半径为2, 相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2, 则两圆的圆心距等于( ) A.1 B.2 C.3 D.2 分析:如果把公共弦长为2的相互垂直的两个截球面圆, 想成一般情况, 问题解决起来 就比较麻烦, 许多考生就是因为这样思考的, 所以浪费了很多时间才得道答案;但是, 如果把公共弦长为2的相互垂直的两个截球面圆, 想成其中一个恰好是大圆, 那么两圆的圆心距就是球心到另一个小圆的距离3, 问题解决起来就很容易了. 二、填空题 13.2 14.2 5.322 16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案, 同样给分. 三、解答题 17.解: 512, 得sinB, 131343由cosC, 得sinC. 55(Ⅰ)由cosB所以sinAsin(BC)sinBcosCcosBsinC(Ⅱ)由S△ABC33. ···································· 5分 6533133得ABACsinA, 22233由(Ⅰ)知sinA, 65故ABAC65, ··················································································· 8分 ABsinB20AB, 又ACsinC132013AB265, AB. 故132ABsinA11. ·所以BC········································································ 10分 sinC2 第5页(共11页) 18.解: 各投保人是否出险互相独立, 且出险的概率都是p, 记投保的10 000人中出险的人数为, 则~B(10,p). (Ⅰ)记A表示事件:保险公司为该险种至少支付10 000元赔偿金, 则A发生当且仅当0, ·················································································································· 2分 4P(A)1P(A) 1P(0) 1(1p), 又P(A)10.99910, 故p0.001. ······························································································ 5分 (Ⅱ)该险种总收入为10000a元, 支出是赔偿金总额与成本的和. 支出 1000050000, 盈利 10000a(1000050000), 盈利的期望为 E10000a10000E50000, ···································· 9分 410410)知, E1000010, 由~B(10,E104a104E5104 433104a1041041035104. E≥0104a104105104≥0 a105≥0 a≥15(元). 故每位投保人应交纳的最低保费为15元. ························································· 12分 19.解法一: D1 C1 依题设知AB2, CE1. A1 (Ⅰ)连结AC交BD于点F, 则BDAC. B1 由三垂线定理知, BDA1C. ··································································· 3分 H E G F B C 第6页(共11页) D A 在平面A1CA内, 连结EF交A1C于点G, 由于 AA1AC22, FCCE故Rt△A1AC∽Rt△FCE, AA1CCFE, CFE与FCA1互余. 于是A1CEF. A1C与平面BED内两条相交直线BD,EF都垂直, 所以A1C平面BED. ················································································· 6分 (Ⅱ)作GHDE, 垂足为H, 连结A1H.由三垂线定理知A1HDE, 故A1HG是二面角A1DEB的平面角. ······················································· 8分 EFCF2CE23, CG3CECF222, EGCECG. 3EF3EG11EFFD2. , GHEF33DE15又AC1AA12AC226, A1GA1CCGAG155. HG56. 3tanA1HG所以二面角A1DEB的大小为arctan55. ·················································· 12分 解法二: 以D为坐标原点, 射线DA为x轴的正半轴, 建立如图所示直角坐标系Dxyz. z D1 A1 C1 B1 2,,0)C(0,2,,0)E(0,2,,1)A1(2,0,4). 依题设, B(2, E D x A B C y uuuruuurDE(0,2,,1)DB(2,2,0), uuuruuuur··································································· 3分 AC(2,2,4),DA1(2,0,4). ·1uuuruuuruuuruuur(Ⅰ)因为ACDB0, ACDE0, 1g1g第7页(共11页) 故A1CBD, A1CDE. 又DBIDED, 平面DBE.·所以AC················································································· 6分 1(Ⅱ)设向量n(x,y,z)是平面DA1E的法向量, 则 rrurruuuruuunDE, nDA1. 故2yz0, 2x4z0. 令y1, 则z2, x4, n(4,···································· 9分 1,2). · rruuurn,AC等于二面角A1DEB的平面角, 1ruuuruuurrngA1C14cosn,A1Cruu. ur42nA1C所以二面角A1DEB的大小为arccos20.解: nn(Ⅰ)依题意, Sn1Snan1Sn3, 即Sn12Sn3, 14. ················································· 12分 42由此得Sn13n12(Sn3n). ······································································· 4分 因此, 所求通项公式为 bnSn3n(a3)2n1, nN*.① ························································ 6分 nn1*(Ⅱ)由①知Sn3(a3)2, nN, 于是, 当n≥2时, anSnSn1 3n(a3)2n13n1(a3)2n2 23n1(a3)2n2, an1an43n1(a3)2n2 2n23n212ga3, 2当n≥2时, 第8页(共11页) 3an1≥an12g2a≥9. 又a2a13a1. 综上, 所求的a的取值范围是9,··················································· 12分 . ·22.解: (Ⅰ)f(x)n2a3≥0 (2cosx)cosxsinx(sinx)2cosx1.····························· 2分 (2cosx)2(2cosx)22π2π1(kZ)时, cosx, 即f(x)0; x2kπ3322π4π1当2kπ(kZ)时, cosx, 即f(x)0. x2kπ332当2kπ因此f(x)在每一个区间2kπ2π2π,2kπ(kZ)是增函数, 332π4π2kπ··························· 6分 f(x)在每一个区间2kπ,(kZ)是减函数. ·33(Ⅱ)令g(x)axf(x), 则 g(x)a2cosx1 (2cosx)2a23 22cosx(2cosx)21113a. 32cosx3故当a≥1时, g(x)≥0. 3又g(0)0, 所以当x≥0时, g(x)≥g(0)0, 即f(x)≤ax. ······· 9分 当0a1时, 令h(x)sinx3ax, 则h(x)cosx3a. 3故当x0,arccos3a时, h(x)0. 因此h(x)在0,arccos3a上单调增加. arccos3a)时, h(x)h(0)0, 故当x(0,第9页(共11页) 即sinx3ax. 于是, 当x(0,arccos3a)时, f(x)当a≤0时, 有fsinxsinxax. 2cosx3ππ10≥ag. 2221. ·因此, a的取值范围是,····························································· 12分 3 x2y21, 21.(Ⅰ)解:依题设得椭圆的方程为4直线AB,EF的方程分别为x2y2, ykx(k0). ································ 2分 如图, 设D(x0,kx0),E(x1,kx1),F(x2,kx2), 其中x1x2, 且x1,x2满足方程(14k)x4, 故x2x122y B O E F D A x 214k2.① uuuruuur1510由ED6DF知x0x16(x2x0), 得x0(6x2x1)x2; 277714k由D在AB上知x02kx02, 得x0所以 2. 12k210, 212k714k2化简得24k25k60, 23或k. ····················································································· 6分 38(Ⅱ)解法一:根据点到直线的距离公式和①式知, 点E,F到AB的距离分别为 解得kh1x12kx125x22kx2252(12k14k2)5(14k)2, h22(12k14k2)5(14k)2. ······················································ 9分 第10页(共11页) 又AB2215, 所以四边形AEBF的面积为 S1AB(h1h2) 214(12k) g5g225(14k)2(12k)14k2 14k24k 214k2≤22, 当2k1, 即当k1时, 上式取等号.所以S的最大值为22. ·············· 12分 2解法二:由题设, BO1, AO2. 设y1kx1, y2kx2, 由①得x20, y2y10, 故四边形AEBF的面积为 SS△BEFS△AEF x22y2 ··································································································· 9分 (x22y2)2 22x24y24x2y2 22≤2(x24y2) 22, 当x22y2时, 上式取等号.所以S的最大值为22. ·································· 12分 第11页(共11页) 因篇幅问题不能全部显示,请点此查看更多更全内容