您的当前位置:首页高考全国二卷理科数学题及其答案

高考全国二卷理科数学题及其答案

2024-01-07 来源:爱问旅游网


普通高等学校招生全国统一考试(全国卷2数学)

理科数学(必修+选修Ⅱ)

第Ⅰ卷

一、选择题

1.设集合M{mZ|3m2}, N{nZ|1≤n≤3},则MIN( ) A.01,

B.101,,

C.0,1,2

3

D.101,,,2

2.设a,bR且b0, 若复数(abi)是实数, 则( ) A.b3a 3.函数f(x)22B.a3b

22C.b9a

22D.a9b

221x的图像关于( ) xA.y轴对称 B. 直线yx对称 C. 坐标原点对称 D. 直线yx对称

1)alnx,b2lnx,clnx, 则( ) 4.若x(e,,A.aB.cC. bD. b13y≥x,5.设变量x,y满足约束条件:x2y≤2,, 则zx3y的最小值( )

x≥2.A.2 B.4 C.6 D.8

6.从20名男同学, 10名女同学中任选3名参加体能测试, 则选到的3名同学中既有男同学又有女同学的概率为( ) A.

9 29B.

10 29C.

19 29D.

20 297.(1x)6(1x)4的展开式中x的系数是( )

B.3

C.3

D.4

A.4

8.若动直线xa与函数f(x)sinx和g(x)cosx的图像分别交于M,N两点, 则MN的最大值为( ) A.1

B.2

C.3

D.2

x2y21的离心率e的取值范围是( ) 9.设a1, 则双曲线2a(a1)22) A.(2,B.(2,5)

5) C.(2,

D.(2,5)

10.已知正四棱锥SABCD的侧棱长与底面边长都相等, E是SB的中点, 则AE,SD所成的角的余弦值为( )

第1页(共11页)

A.

1 3B.2 3C.3 3D.

2 311.等腰三角形两腰所在直线的方程分别为xy20与x7y40, 原点在等腰三角形的底边上, 则底边所在直线的斜率为( ) A.3

B.2

C.1 3D.1 212.已知球的半径为2, 相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2, 则两圆的圆心距等于( ) A.1

B.2

C.3

D.2

第Ⅱ卷

二、填空题:本大题共4小题, 每小题5分, 共20分.把答案填在题中横线上. 13.设向量a(1,,2)b(2,3), 若向量ab与向量c(4,7)共线, 则 . 14.设曲线ye在点(0,1)处的切线与直线x2y10垂直, 则a .

15.已知F是抛物线C:y4x的焦点, 过F且斜率为1的直线交C于A,B两点.设

2axFAFB, 则FA与FB的比值等于 .

16.平面内的一个四边形为平行四边形的充要条件有多个, 如两组对边分别平行, 类似地, 写出空间中的一个四棱柱为平行六面体的两个充要条件:

充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)

三、解答题:本大题共6小题, 共70分.解答应写出文字说明, 证明过程或演算步骤. 17.(本小题满分10分) 在△ABC中, cosB(Ⅰ)求sinA的值;

(Ⅱ)设△ABC的面积S△ABC54, cosC. 13533, 求BC的长. 218.(本小题满分12分)

购买某种保险, 每个投保人每年度向保险公司交纳保费a元, 若投保人在购买保险的一年度内出险, 则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险, 且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为

10.999104.

(Ⅰ)求一投保人在一年度内出险的概率p;

(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元, 为保证盈利的期望不小于0, 求每位投保人应交纳的最低保费(单位:元). 19.(本小题满分12分)

第2页(共11页)

如图, 正四棱柱ABCDA1B1C1D1中, AA12AB4, 点E在CC1上且

C1E3EC.

平面BED; (Ⅰ)证明:AC1(Ⅱ)求二面角A1DEB的大小.

20.(本小题满分12分)

A1 D1 C1 B1 E

D A B C

n*设数列an的前n项和为Sn.已知a1a, an1Sn3, nN. n(Ⅰ)设bnSn3, 求数列bn的通项公式;

(Ⅱ)若an1≥an, nN, 求a的取值范围.

*21.(本小题满分12分)

设椭圆中心在坐标原点, A(2,,0)B(0,1)是它的两个顶点, 直线ykx(k0)与AB相交于点D, 与椭圆相交于E、F两点.

uuuruuur(Ⅰ)若ED6DF, 求k的值;

(Ⅱ)求四边形AEBF面积的最大值. 22.(本小题满分12分) 设函数f(x)sinx.

2cosx(Ⅰ)求f(x)的单调区间;

(Ⅱ)如果对任何x≥0, 都有f(x)≤ax, 求a的取值范围.

第3页(共11页)

2008年参考答案和评分参考

一、选择题

1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C

部分题解析:2. 设a,bR且b0, 若复数(abi)3是实数, 则( )

A.b3a

22B.a3b

22C.b9a

22D.a9b,

22bi3ag(bi)2(bi)3 (←考查和的立方公式, 或二项式定理) 解:(abi)3a33a2gb)(3agbb)i (←考查虚数单位i的运算性质) (a3ag3223 R (←题设条件)

∵a,bR且b0

bb0 (←考查复数与实数的概念) ∴ 3ag ∴ b3a. 故选A.

22236. 从20名男同学, 10名女同学中任选3名参加体能测试, 则选到的3名同学中既有

男同学又有女同学的概率为( ) A.

9 29B.

10 29C.

19 29D.

20 29思路1:设事件A:“选到的3名同学中既有男同学又有女同学”, 其概率为:

2112C20C10C20C10 (←考查组合应用及概率计算公式) P(A)3C302019109102021 (←考查组合数公式) 2130292832110191010109  (←考查运算技能)

10291420 

29故选D.

思路2:设事件A:“选到的3名同学中既有男同学又有女同学”,

事件A的对立事件为A:“选到的3名同学中要么全男同学要么全女同学”

其概率为:

P(A)1P(A) (←考查对立事件概率计算公式)

第4页(共11页)

33C20C10 1 (←考查组合应用及概率计算公式) 3C30201981098321321(←考查组合数公式) 13029283212019181098  (←考查运算技能)

30292820 

29故选D.

12.已知球的半径为2, 相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,

则两圆的圆心距等于( ) A.1

B.2

C.3

D.2

分析:如果把公共弦长为2的相互垂直的两个截球面圆, 想成一般情况, 问题解决起来

就比较麻烦, 许多考生就是因为这样思考的, 所以浪费了很多时间才得道答案;但是, 如果把公共弦长为2的相互垂直的两个截球面圆, 想成其中一个恰好是大圆, 那么两圆的圆心距就是球心到另一个小圆的距离3, 问题解决起来就很容易了. 二、填空题

13.2 14.2 5.322

16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案, 同样给分. 三、解答题 17.解:

512, 得sinB, 131343由cosC, 得sinC.

55(Ⅰ)由cosB所以sinAsin(BC)sinBcosCcosBsinC(Ⅱ)由S△ABC33. ···································· 5分 6533133得ABACsinA, 22233由(Ⅰ)知sinA,

65故ABAC65, ··················································································· 8分

ABsinB20AB, 又ACsinC132013AB265, AB. 故132ABsinA11. ·所以BC········································································ 10分

sinC2

第5页(共11页)

18.解:

各投保人是否出险互相独立, 且出险的概率都是p, 记投保的10 000人中出险的人数为, 则~B(10,p).

(Ⅰ)记A表示事件:保险公司为该险种至少支付10 000元赔偿金, 则A发生当且仅当0, ·················································································································· 2分

4P(A)1P(A)

1P(0)

1(1p),

又P(A)10.99910,

故p0.001. ······························································································ 5分 (Ⅱ)该险种总收入为10000a元, 支出是赔偿金总额与成本的和. 支出 1000050000,

盈利 10000a(1000050000),

盈利的期望为 E10000a10000E50000, ···································· 9分

410410)知, E1000010, 由~B(10,E104a104E5104

433104a1041041035104. E≥0104a104105104≥0

a105≥0 a≥15(元).

故每位投保人应交纳的最低保费为15元. ························································· 12分

19.解法一:

D1 C1 依题设知AB2, CE1.

A1 (Ⅰ)连结AC交BD于点F, 则BDAC. B1 由三垂线定理知, BDA1C. ··································································· 3分

H E

G F B C 第6页(共11页)

D A

在平面A1CA内, 连结EF交A1C于点G, 由于

AA1AC22, FCCE故Rt△A1AC∽Rt△FCE, AA1CCFE,

CFE与FCA1互余.

于是A1CEF.

A1C与平面BED内两条相交直线BD,EF都垂直,

所以A1C平面BED. ················································································· 6分 (Ⅱ)作GHDE, 垂足为H, 连结A1H.由三垂线定理知A1HDE, 故A1HG是二面角A1DEB的平面角. ······················································· 8分

EFCF2CE23, CG3CECF222, EGCECG. 3EF3EG11EFFD2. , GHEF33DE15又AC1AA12AC226, A1GA1CCGAG155. HG56. 3tanA1HG所以二面角A1DEB的大小为arctan55. ·················································· 12分 解法二:

以D为坐标原点, 射线DA为x轴的正半轴, 建立如图所示直角坐标系Dxyz.

z D1 A1 C1 B1 2,,0)C(0,2,,0)E(0,2,,1)A1(2,0,4). 依题设, B(2,

E D x A B C y uuuruuurDE(0,2,,1)DB(2,2,0),

uuuruuuur··································································· 3分 AC(2,2,4),DA1(2,0,4). ·1uuuruuuruuuruuur(Ⅰ)因为ACDB0, ACDE0, 1g1g第7页(共11页)

故A1CBD, A1CDE. 又DBIDED,

平面DBE.·所以AC················································································· 6分 1(Ⅱ)设向量n(x,y,z)是平面DA1E的法向量, 则

rrurruuuruuunDE, nDA1.

故2yz0, 2x4z0.

令y1, 则z2, x4, n(4,···································· 9分 1,2). ·

rruuurn,AC等于二面角A1DEB的平面角, 1ruuuruuurrngA1C14cosn,A1Cruu. ur42nA1C所以二面角A1DEB的大小为arccos20.解:

nn(Ⅰ)依题意, Sn1Snan1Sn3, 即Sn12Sn3,

14. ················································· 12分 42由此得Sn13n12(Sn3n). ······································································· 4分

因此, 所求通项公式为

bnSn3n(a3)2n1, nN*.① ························································ 6分

nn1*(Ⅱ)由①知Sn3(a3)2, nN,

于是, 当n≥2时,

anSnSn1

3n(a3)2n13n1(a3)2n2 23n1(a3)2n2, an1an43n1(a3)2n2

2n23n212ga3, 2当n≥2时,

第8页(共11页)

3an1≥an12g2a≥9.

又a2a13a1.

综上, 所求的a的取值范围是9,··················································· 12分 . ·22.解: (Ⅰ)f(x)n2a3≥0

(2cosx)cosxsinx(sinx)2cosx1.····························· 2分

(2cosx)2(2cosx)22π2π1(kZ)时, cosx, 即f(x)0; x2kπ3322π4π1当2kπ(kZ)时, cosx, 即f(x)0. x2kπ332当2kπ因此f(x)在每一个区间2kπ2π2π,2kπ(kZ)是增函数, 332π4π2kπ··························· 6分 f(x)在每一个区间2kπ,(kZ)是减函数. ·33(Ⅱ)令g(x)axf(x), 则

g(x)a2cosx1

(2cosx)2a23 22cosx(2cosx)21113a.

32cosx3故当a≥1时, g(x)≥0. 3又g(0)0, 所以当x≥0时, g(x)≥g(0)0, 即f(x)≤ax. ······· 9分 当0a1时, 令h(x)sinx3ax, 则h(x)cosx3a. 3故当x0,arccos3a时, h(x)0. 因此h(x)在0,arccos3a上单调增加.

arccos3a)时, h(x)h(0)0, 故当x(0,第9页(共11页)

即sinx3ax.

于是, 当x(0,arccos3a)时, f(x)当a≤0时, 有fsinxsinxax.

2cosx3ππ10≥ag. 2221. ·因此, a的取值范围是,····························································· 12分 3

x2y21, 21.(Ⅰ)解:依题设得椭圆的方程为4直线AB,EF的方程分别为x2y2, ykx(k0). ································ 2分 如图, 设D(x0,kx0),E(x1,kx1),F(x2,kx2), 其中x1x2, 且x1,x2满足方程(14k)x4, 故x2x122y B O E F D A x 214k2.①

uuuruuur1510由ED6DF知x0x16(x2x0), 得x0(6x2x1)x2;

277714k由D在AB上知x02kx02, 得x0所以

2. 12k210,

212k714k2化简得24k25k60,

23或k. ····················································································· 6分 38(Ⅱ)解法一:根据点到直线的距离公式和①式知, 点E,F到AB的距离分别为

解得kh1x12kx125x22kx2252(12k14k2)5(14k)2,

h22(12k14k2)5(14k)2. ······················································ 9分

第10页(共11页)

又AB2215, 所以四边形AEBF的面积为

S1AB(h1h2) 214(12k) g5g225(14k)2(12k)14k2 14k24k 214k2≤22,

当2k1, 即当k1时, 上式取等号.所以S的最大值为22. ·············· 12分 2解法二:由题设, BO1, AO2.

设y1kx1, y2kx2, 由①得x20, y2y10, 故四边形AEBF的面积为

SS△BEFS△AEF

x22y2 ··································································································· 9分

(x22y2)2 22x24y24x2y2 22≤2(x24y2) 22,

当x22y2时, 上式取等号.所以S的最大值为22. ·································· 12分

第11页(共11页)

因篇幅问题不能全部显示,请点此查看更多更全内容