您的当前位置:首页新人教版本六年级数学毕业总复习资料--整理全面版

新人教版本六年级数学毕业总复习资料--整理全面版

2022-11-05 来源:爱问旅游网


六年级毕业班数学复习资料

常用的数量关系式

1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6、加数+加数=和 和-一个加数=另一个加数

7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数

9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数

解方程方法一:消项(如果消+3,方程两边就同时-3 ;如果消×3,方程两边就同时÷3) 1:把方程里的“括号”全部去掉,两种去括号的方法任选其一 2:如果两边都有 几 , 要先消去其中一边的 几

(如果有“-几”,就把“-几”消去,如果没有“-几”,就把较小的消去掉) 3:消去 “-几”, 消去“÷”

4:把这边的数字全部消掉,先消“+ -” 再消“÷” 最后消“×” (注意:无论解到哪一步,数字+几 都要写成 几+数字)

解方程方法二:移项(+3移到另一边就变成-3,×3移到另一边就变成÷3) 1:把方程里的“括号”全部去掉,两种去括号的方法任选其一 2:如果两边都有 几 ,就把其中一边的 几 移到另一边

(如果有“-几”,就把“-几”移到另一边。如果没有“-几”,就把较小的移到另一边) 3:把“-几”移到另一边,把 “÷”移到另一边”

4:把这边的数字全部移到另一边,先移“+ -” 再移“÷” 最后移“×” (注意:无论解到哪一步,数字+几 都要写成 几+数字)

小学数学图形计算公式

1、正方形 ( C:周长 S:面积 a:边长 )

周长=边长×4 C=4a 面积=边长×边长 S=a×a

2、正方体 ( V:体积 a:棱长 )

表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

3、长方形( C:周长 S:面积 a:边长 )

周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab

4、长方体 (V:体积 S:面积 a:长 b: 宽 h:高) (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh

5、三角形 ( S:面积 a:底 h:高 )

面积=底×高÷2 S=ah÷2

三角形的高=面积 ×2÷底 三角形的底=面积 ×2÷高 6、平行四边形 (S:面积 a:底 h:高)

面积=底×高 S=ah

7、梯形 (S:面积 、 a:上底 、 b:下底 、 h:高)

面积=(上底+下底)×高÷2 、 S=( a+b )× h÷2 8、圆形 (S:面积 、 C:周长 、

:圆周率 、 d=直径 、 r=半径)

(1)周长=直径×л=2×π×半径 、 C=πd=2πr (2)面积=半径×半径×π 、 S=πr² (3)半圆周长=r( π+2 ) (4)圆周长的一半=πr (5)S环=π(R²-r²) (6)S扇=n360πr²

9、圆柱体 (V:体积 、 h:高 、 S:底面积 、 r:底面半径 、 C:底面周长)

(1)侧面积=底面周长×高=Ch(2πr或πd) (2)表面积=侧面积+底面积×2

(3)体积=底面积×高 (4)体积=侧面积÷2×半径 10、圆锥体 (V:体积 、 h:高 、 S:底面积 、 r:底面半径)

体积=底面积×高÷3 11、总数÷总份数=平均数 12、和差问题的公式

(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题

和÷(倍数+1)=小数 小数×倍数=大数 (或者 和-小数=大数) 14、差倍问题

差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

15、相遇问题 π = 3.14 2π = 6.28 3π = 9.42 4π = 12.56 5π = 15.7 相遇路程=速度和×相遇时间6π = 18.84 7π = 21.98 8π = 25.12 9π = 28.26 10π = 31.4 相遇时间=相遇路程÷速度和16π = 50.24 25π = 78.5 36π = 113.04 49π =153.86 速度和=相遇路程÷相遇时间 64π = 200.96 81π= 254.34 100π = 314 16、追及问题

追及距离=速度差×追及时间 11² = 121 12² = 144 13² = 169 14² = 196 15² = 225 追及时间=追及距离÷速度差 16² = 256 17² = 289 18² = 324 19² = 361 20²=400 速度差=追及距离÷追及时间 17流水问题

顺流速度=静水速度+水流速度 12=0.5=50% 15=0.2=20% 18=0.125=12.5% 逆流速度=静水速度-水流速度 14=0.25=25% 25=0.4=40% 38=0.375=37.5% 静水速度=(顺流速度+逆流速度)÷2 34=0.75=75% 35=0.6=60% 58=0.625=62.5% 水流速度=(顺流速度-逆流速度)÷2 116=0.0625=6.25% 45=0.8=80% 78=0.875= 87.5% 18、浓度问题 120=0.05= 5﹪ 125=0.04= 4﹪ 150=0.02=2﹪ 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 19、利润与折扣问题

利润 =售出价-成本

利润率 =利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比

利息 =本金×利率×时间

税后利息=本金×利率×时间×(1-20%) 20、植树问题

非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距+1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 封闭线路上(例如围成一个圆形、椭圆形)的植树问题的数量关系如下

株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 锯木问题:段数=次数+1 次数=段数-1 总时间=每次时间×次数 实心方阵:最外层的人数是=(每边人数-1)×4 每边人数=最外层的人数÷4+1

整个方阵的总人数是=每边人数×每边人数

空心方阵:总人数=(最外层每边人数-空心方阵的层数)×空心方阵的层数×4 内层总人数=最外层总人数-层数×4

多边阵 :最外层的人数是=(每边人数-1)×边数 或 每边人数×边数-边数 21、鸡兔同笼

⑴已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数 ⑵得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(每只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数 =不合格品数

常用单位换算

长度单位换算 km m dm cm mm 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 km² m² dm² cm² mm² 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 L mL m³ dm³ cm³ 1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升 1立方米=1000升 1立方分米=1升 1立方厘米=1毫升 质量单位换算 t kɡ ɡ 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算

1元=10角 1角=10分 1元=100分 时间单位换算 h min s

1世纪=100年 1年=12月 大月(31天)有:1\\3\\5\\7\\8\\10\\12月 小月(30天)的有:4\\6\\9\\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒

简便运算

常见乘法计算(敏感数字) :25×4=100 125×8=1000

加法交换律简算例子 加法结合律简算例子 乘法交换律简算例子 乘法结合律简算例子 0.875+23+18 23+14+0.8 0.4×33×52 23×0.375×163 =78+23+18 =23+14+45 =25×33×52 =23×38×163 =78+18+23 =23+(14+45) =25×25×33 =23 ×(38×163) =1+23 =23+1 =1×3 =23×2

含加法交换律与结合律 含乘法交换律与结合律 数字换减法式 数字换加法式 0.875+23+18+13 0.375×297×163×729 35×536 101×910 =78+23+18+13 =38×297×163×729 = (36-1) ×536 = (100+1) ×910 =78+18+ 23+13 =38×163×297×729 =36×536-1×536 =100×910+1×910

= (78+18)+ (23+13) = (38×163)×(297×729) =5-536 =1+910 =1+1 =2×1

乘法分配律提取式 乘法分配律提取式 乘法分配律(添项) 乘法分配律(添项) 101×0.9-910×1 95.5÷1.6-15.5÷1.6 101×0.9-910 52×58+29×58-0.625 =101×910-910×1 =(95.5-15.5)÷1.6 =101×910-910 =52×58+29×58-58 =101×910-1×910 =80÷1.6 =101×910-1×910 =52×58+29×58-1×58 =(101-1) ×910 =800÷16 =(101-1) ×910 =(52+29-1)×58 =100×910 =100×910 =80×58 减法的性质简算例子 减法的性质简算例子 减法的性质简算例子 数字换乘法式 18-58-0.375 134-716-0.75 1225-(716+0.4) 0.56×125 =18-58-38 =134-716-34 =1225-(716+25) =0.7×0.8×125 =18-(58+38) =134-34-716 =1225-25-716 =0.7×(0.8×125) =18-1 =1-716 =12-716 =0.7×100 除法的性质简算例子 除法的性质简算例子 除法的性质简算例子 数字换乘法式 3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) 33333×33333 =3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =11111×3×33333 =3200÷1 =1000÷2.5 =1000÷2.5 =11111×99999 同级运算中,第一个数不能动,后面的数可以带着符号搬家 =11111×(100000-1) 123+716-23 250÷0.8×0.4 123-716+13 29×0.25÷0.29 =123-23+716 =250×0.4÷0.8 =123+13-716 =29÷0.29×0.25 =1+716 =100÷0.8 =2-716 =100×0.25

基本概念

第一章 数和数的运算

一 概念

(一)整数

1.自然数、负数和整数

(1)自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

1是自然数的基本单位。任何一个自然数都是由若干个1组成。零是最小的自然数,没有最大的自然数。

(2) 负数:在正数前面加上“—”的数叫做负数,“—”叫做负号

(3)

0即不是正数,也不是负数。

(4)零的作用:①表示位数。读写数时,某个数位上一个单位也没有,就用零表示。②占位作用。③作为界限。如“零上温度与零下温度的分界”。 2.计数单位

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 3.数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 4.数的整除

整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a因数。倍数和因数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的因数。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。

例如:3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。 个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。 例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),

100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数, 例如 :4、6、8、9、12都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,

例如:15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如:把28分解质因数

几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如:12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。

公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。 如果两个数是互质数,它们的最大公因数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,例如:2的倍数有2、4、6 、8、10、12、14、16、18 …… 3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数

1 小数的意义

把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 …… 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:π

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。 例如: 3.777 …… 简写作 :

0.5302302 …… 简写作 :

(三)分数

1 分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数

表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用\"%\"来表示。百分号是表示百分数的符号。

二 方法

(一)数的读法和写法

1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。

3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数

的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。 4. 大小比较

(1). 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

(2). 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

(3). 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公因数的方法是:先用这几个数的公因数连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公因数 。 3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公因数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的

最小公倍数。

4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公因数只有1时,这两个合数互质。

(五) 约分和通分

约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三 性质和规律

(一)规律

一个数(0除外)乘大于1的数, 积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1, 积等于这个数。

商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 两数相除,除数不变,被除数扩大或缩小几倍,商也随着扩大或缩小几倍。

两数相除,被除数不变,除数扩大几倍,商就缩小几倍。两数相除,被除数不变,除数缩小几倍,商就扩大几倍。

一个数(0除外)除以大于1的数, 商小于被除数 一个数(0除外)除以1, 商等于被除数 一个数(0除外)除以小于1的数(0除外), 商大于被除数 (二)小数的性质

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化

1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍…… 3. 小数点向左移或者向右移位数不够时,要用“0”补足位。

(四)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (五)分数与除法的关系 1. 被除数÷除数= 被除数除数

2. 因为零不能作除数,所以分数的分母不能为零。 3. 被除数 相当于分子,除数相当于分母。

四 运算的意义

(一)整数四则运算

1整数加法:

把两个数合并成一个数的运算叫做加法。

在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 加数+加数=和 一个加数=和-另一个加数 2整数减法:

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。 加法和减法互为逆运算。 3整数乘法:

求几个相同加数的和的简便运算叫做乘法。

在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 在乘法里,0和任何数相乘都得0 ; 1和任何数相乘都的任何数。 一个因数× 一个因数 =积 一个因数=积÷另一个因数 4 整数除法:

已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。 乘法和除法互为逆运算。

在除法里,0不能做除数。 ; 因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

(二)小数四则运算

1. 小数加法:

小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 2. 小数减法:

小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算. 3. 小数乘法:

小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。 4. 小数除法:

小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。 5. 乘方:

求几个相同因数的积的运算叫做乘方。例如 3 × 3 =3²

(三)分数四则运算

1. 分数加法:

分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。 2. 分数减法:

分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。 3. 分数乘法:

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 4. 乘积是1的两个数叫做互为倒数。 5. 分数除法:

分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。

(四)运算定律

1. 加法交换律:

两个数相加,交换加数的位置,它们的和不变。即a+b=b+a

2. 加法结合律:

三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变。即(a+b)+c=a+(b+c) 3. 乘法交换律:

两个数相乘,交换因数的位置它们的积不变。即a×b=b×a 4. 乘法结合律:

三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变。即(a×b)×c=a×(b×c) 5. 乘法分配律:

两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加。 即(a+b)×c=a×c+b×c 6. 减法的性质:

从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变。即a-b-c=a-(b+c)

(五)运算法则

1. 整数加法计算法则:

相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。 2. 整数减法计算法则:

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。 3. 整数乘法计算法则:

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。 4. 整数除法计算法则:

先从被除数的高位除起,除数是几位数,就看被除数的前几位; 如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。 5. 小数乘法法则:

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

6. 除数是整数的小数除法计算法则:

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。 7. 除数是小数的除法计算法则:

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。 8. 同分母分数加减法计算方法:

同分母分数相加减,只把分子相加减,分母不变。 9. 异分母分数加减法计算方法:

先通分,然后按照同分母分数加减法的的法则进行计算。 10. 带分数加减法的计算方法:

整数部分和分数部分分别相加减,再把所得的数合并起来。 11. 分数乘法的计算法则:

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 12. 分数除法的计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(六) 运算顺序

1. 小数四则运算的运算顺序和整数四则运算顺序相同。 2. 分数四则运算的运算顺序和整数四则运算顺序相同。 3. 没有括号的混合运算:

同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。 4. 有括号的混合运算:

先算小括号里面的,再算中括号里面的,最后算括号外面的。 5. 第一级运算:

加法和减法叫做第一级运算。 6. 第二级运算:

乘法和除法叫做第二级运算。

应用

(一)整数和小数的应用

1 简单应用题

(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。 (2) 解题步骤:

a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。 b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。

2 复合应用题

(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。 求比两个数的和多(少)几个数的应用题。 比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。 已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。 (4)解答连乘连除应用题。 (5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。 ( 7 ) 解答加法应用题:

a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。 ( 8 ) 解答减法应用题:

a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。 ( 9 ) 解答乘法应用题:

a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

( 10 ) 解答除法应用题:

a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。 c求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。 (11)常见的数量关系: 总价= 单价×数量 路程= 速度×时间

工作总量=工作时间×工作效率 总产量=单产量×数量

3典型应用题

具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。 (1)平均数问题:平均数是等分除法的发展。 解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式:(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:

(大数-小数)÷2=小数应得数

最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为1100,汽车从乙地到甲地速度为 60 千米 ,所用的时间是160 ,汽车共行的时间为1100+ 160=275,汽车的平均速度为2 ÷275=75 (千米)

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。 根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。 一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。” 两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。” 正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。 反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。 解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)

总数量÷单一量=份数(反归一)

例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天? 分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量

×单位个数÷另一个单位数量= 另一个单位数量。

例:修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米? 分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+差)÷2 = 大数 大数-差=小数

(和-差)÷2=小数 和-小数= 大数

例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?

分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:

和÷倍数和=标准数 标准数×倍数=另一个数

例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?

分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与

( 5+1 )倍对应,总车辆数应( 115-7 )辆 。

列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

解题规律:

两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。

例:甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?

分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:

同时同地相背而行:路程=速度和×时间。 同时相向而行:相遇时间=速度和×时间

同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。 同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。

例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?

分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。

已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)

(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。

船速:船在静水中航行的速度。

水速:水流动的速度。 顺水速度:船顺流航行的速度。 逆水速度:船逆流航行的速度。 顺速=船速+水速 逆速=船速-水速

解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。

解题规律:

船行速度=(顺水速度+ 逆流速度)÷2 流水速度=(顺流速度逆流速度)÷2 路程=顺流速度× 顺流航行所需时间 路程=逆流速度×逆流航行所需时间

例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米? 分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。

(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

解题关键:要弄清每一步变化与未知数的关系。

解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。

根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。 例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人? 分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调

入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为:168 ÷ 4-2+3=43 (人)

一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。

(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。

解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

解题规律:非封闭线路的两端都要植树

株数=段数+1=全长÷株距+1 全长=株距×(株数-1) 株距=全长÷(株数-1)

例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。

分析:本题是:非封闭线路的两端都要埋电线杆,要把电线杆的根数减掉1 列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。 解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

解题规律:

总差额÷每人差额=人数

总差额的求法可以分为以下四种情况: 第一次多余,第二次不足,总差额=多余+ 不足 第一次正好,第二次多余或不足 ,总差额=多余或不足 第一次多余,第二次也多余,总差额=大多余-小多余

第一次不足,第二次也不足, 总差额= 大不足-小不足

例: 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?

分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。

解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。

例:父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?

分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题

解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。

解题规律:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数

例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只? 兔子只数( 170 - 2 × 50 )÷ ( 4 - 2) =35 (只) 鸡的只数 50-35=15 (只)

(二)分数和百分数的应用

1 分数加减法应用题:

分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同

的只是在已知数或未知数中含有分数。 2分数乘法应用题:

是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数

的意义正确列式。 3 分数除法应用题:

求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一

的量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。 已知一个数的几分之几(或百分之几 ) ,求这个数。

特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或

者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际 数量。 4 出勤率

发芽率=发芽种子数/试验种子数×100% 小麦的出粉率= 面粉的重量/小麦的重量×100% 产品的合格率=合格的产品数/产品总数×100% 职工的出勤率=实际出勤人数/应出勤人数×100% 5 工程问题:

是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

数量关系式:

工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率 工作总量÷工作效率和=合作时间 6 折扣和成数

①折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。

几折就是十分之几,也就是百分之几十。例如八折=810=80﹪,六折五=6.510=65100=65﹪ 解决打折的问题,关键是先将打的折数转化为百分数或分数,

然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答 商品现在打八折 :现在的售价是原价的80﹪ 商品现在打六折五:现在的售价是原价的65﹪ ②成数:

几成就是十分之几,也就是百分之几十。例如一成=110=10﹪,八成五=8.510=85100=80﹪ 解决成数的问题,关键是先将成数转化为百分数或分数,

然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答 这次衣服的进价增加一成 :这次衣服的进价比原来的进价增加10﹪ 今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪

7 税率和利率

①应纳税额的计算方法: 应纳税额=总收入×税率 收入额=应纳税额÷税率 ②利息的计算公式:利息=本金×利率×时间 利率=利息÷时间÷本金×100% ③注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率) 税后利息=本金×利率×时间×(1-利息税率)

量的知识

一 长度

(一) 什么是长度

长度是一维空间的度量。 (二) 长度常用单位

* 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um) (三) 单位之间的换算

* 1毫米 =1000微米 * 1厘米 =10 毫米 * 1分米 =10 厘米 * 1米 =1000 毫米 * 1千米 =1000 米

二 面积

(一)什么是面积

面积就是指物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。 (二)常用的面积单位

* 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米 (三)面积单位的换算

* 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米 * 1公倾 =10000 平方米 * 1平方公里 =100 公顷

三 体积和容积

(一)什么是体积、容积

体积就是指物体所占空间的大小。

容积是指箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。 (二)常用单位 1 体积单位

* 立方米m³ * 立方分米dm³ * 立方厘米cm³ 2 容积单位 * 升L * 毫升mL (三)单位换算 1 体积单位

* 1立方米=1000立方分米 * 1立方分米=1000立方厘米 2 容积单位 * 1升 =1000毫升 * 1升 =1立方分米 * 1毫升=1立方厘米

四 质量

(一)什么是质量

质量是指表示表示物体有多重。 (二)常用单位

* 吨 (t) * 千克 (kg) * 克 (g) (三)常用换算

* 1吨=1000千克 * 1千克=1000克

五 时间

(一)什么是时间

时间是指有起点和终点的一段时间 (二)常用单位

世纪 年 月 日 时h 分min 秒s (三)单位换算 * 1世纪=100年 * 1年=365天 平年 * 1年=366天 闰年

* 一、三、五、七、八、十、十二是大月 大月有31 天 * 四、六、九、十一是小月小月 小月有30天 * 平年2月有28天 闰年2月有29天

* 1天 = 24小时 * 1小时=60分 * 1分 =60秒

六 货币

(一)什么是货币

货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。 (二)常用单位 * 元 * 角 * 分 (三)单位换算

* 1元=10角 * 1角=10分

七 同一类计量单位之间的化聚

1.名数。在数的后面附有计量单位的数叫做名数。如:3厘米,50千克,2.5小时等都是名

数。

(1).单名数。只带有一个计量单位的名数叫做单名数。如:8.7吨,17.9升等都是单名数 (2)复名数。带有两个或两个以上同类计量单位的名数复名数。如:1元5角,6平方米7平方分米,9小时30分18秒等都是复名数。

2.化法:把高级单位的单名数或复名数改换成低级单位的单名数或复名数的方法,叫做化

法。主要用相应的进率乘高级单位的量数。

3.聚法:把低级单位的单名数改换成高级单位的单名数或复名数的方法,叫做聚法。主要

用相应的进率除相关的量数。

化法和聚法的关系:

高级单位的名数低级单位的名数

高级单位化低级单位: 高级单位的数×它们之间的进率 低级单位聚高级单位: 低级单位的数÷它们之间的进率

代数初步知识

一、用字母表示数

1 用字母表示数的意义和作用

* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

(1)常见的数量关系

路程用s表示,速度用v表示,时间用t表示,三者之间的关系:

s=vt v=st t=sv

总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

a=bc b=ac c=ab

(2)运算定律和性质

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc) 乘法分配律:(a+b)c=ac+bc 减法的性质:a-(b+c) =a-b-c

(3)用字母表示几何形体的公式

长方形的长用a表示,宽用b表示,周长用C表示,面积用S表示。 C =2(a+b) S =ab

正方形的边长a用表示,周长用C表示,面积用S表示。 C= 4a S =a²

平行四边形的底a用表示,高用h表示,面积用S表示。 S =ah

三角形的底用a表示,高用h表示,面积用S表示。 S =12ah

梯形的上底用a表示,下底用b表示,高用h表示,中位线用m表示,面积用S表示。 S = 12(a+b) h S =mh

圆的半径用r表示,直径用d表示,周长用C表示,面积用S表示。 C =πd=2πr 半圆周长=r(π+2) 圆周长的一半=

r S =πr²

扇形的半径用r表示,n表示圆心角的度数,面积用S表示。 S =n360πr²

长方体的长用a表示,宽用b表示,高用h表示,表面积用S表示,体积用V表示。 V= S h S=2(ab+ah+bh) V=abh

正方体的棱长用a表示,底面周长用C表示,底面积用S表示, 体积用V表示. S =6a² V=a³= a×a×a

圆柱的高用h表示,底面周长用C表示,底面积用S表示, 体积用V表示. S侧=Ch S表= S侧+2 S底 V= S h 圆锥的高用h表示,底面积用S表示, 体积用V表示. V= 13S底×h

3 用字母表示数的写法

数字和字母、字母和字母相乘时,乘号可以记作“”,或者省略不写,数字要写在字母的前面。

当“1”与任何字母相乘时,“1”省略不写。

在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。

用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。

4将数值代入式子求值

* 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。

* 同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。

二、简易方程

方程和方程的解

1方程:含有未知数的等式叫做方程。

注意方程是等式,又含有未知数,两者缺一不可。

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 。

2 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

三、解方程

解方程,求方程的解的过程叫做解方程。

解方程方法一:消项(如果消+3,方程两边就同时-3 ;如果消×3,方程两边就同时÷3) 1:把方程里的“括号”全部去掉,两种去括号的方法任选其一 2:如果两边都有 几 , 要先消去其中一边的 几

(如果有“-几”,就把“-几”消去,如果没有“-几”,就把较小的消去掉) 3:消去 “-几”, 消去“÷”

4:把这边的数字全部消掉,先消“+ -” 再消“÷” 最后消“×” (注意:无论解到哪一步,数字+几 都要写成 几+数字)

解方程方法二:移项(+3移到另一边就变成-3,×3移到另一边就变成÷3) 1:把方程里的“括号”全部去掉,两种去括号的方法任选其一 2:如果两边都有 几 ,就把其中一边的 几 移到另一边

(如果有“-几”,就把“-几”移到另一边。如果没有“-几”,就把较小的移到另一边)

3:把“-几”移到另一边,把 “÷”移到另一边”

4:把这边的数字全部移到另一边,先移“+ -” 再移“÷” 最后移“×” (注意:无论解到哪一步,数字+几 都要写成 几+数字)

四、列方程解应用题

1 列方程解应用题的意义

* 用方程式去解答应用题求得应用题的未知量的方法。 2 列方程解答应用题的一般步骤 * 弄清题意,确定未知数并用x表示; * 找出题中的数量之间的相等关系; * 列方程,解方程; * 检查或验算,写出答案。 3列方程解应用题的方法

* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。 4列方程解应用题的范围

小学范围内常用方程解的应用题: a一般应用题; b和倍、差倍问题;

c几何形体的周长、面积、体积计算; d 分数、百分数应用题; e 比和比例应用题。

五 比和比例

1比的意义和性质

(1) 比的意义

两个数相除又叫做两个数的比。

“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。 比值通常用分数表示,也可以用小数表示,有时也可能是整数。 比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。 (2)比的性质

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。 (3) 求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。 (4)比例尺

图上距离 :实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。 线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。 (5)按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2 比例的意义和性质

(1) 比例的意义

表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。 两端的两项叫做外项,中间的两项叫做内项。 (2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。 (3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未

知项。求比例中的未知项,叫做解比例。

3 正比例和反比例

(1) 成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。 用字母表示yx=k(一定) (2)成反比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。 用字母表示x×y=k(一定)

空间与图形

一 线和角 (1)线

* 直线

直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。 * 射线

射线只有一个端点;长度无限。 * 线段

线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。 * 平行线

在同一平面内,不相交的两条直线叫做平行线。 两条平行线之间的垂线长度都相等。 * 垂线

两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(2)角

(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做

角的边。 (2)角的分类

锐角:小于90°的角叫做锐角。 直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。 周角:角的一边旋转一周,与另一边重合。周角是360°。

二 平面图形

1长方形

(1)特征 : 对边相等,4个角都是直角的四边形。有两条对称轴。 (2)计算公式 : c=2(a+b) 、 s=ab 2正方形

(1)特征: 四条边都相等,四个角都是直角的四边形。有4条对称轴。 (2)计算公式: c=4a 、 s=a²

3三角形

(1)特征.由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高 (2)计算公式 : S=12ah (3) 分类: 按角分

锐角三角形 :三个角都是锐角。

直角三角形 :有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。 钝角三角形:有一个角是钝角。 按边分

不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。 等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。 4平行四边形 (1) 特征 :

两组对边分别平行的四边形。(相对的边平行且相等。对角相等,相邻的两个角的度数之和为180度。平行四边形容易变形。) (2) 计算公式 : s=ah 5 梯形 (1)特征 :

只有一组对边平行的四边形。 中位线等于上下底和的一半。 等腰梯形有一条对称轴。

(2)计算公式: S=12(a+b)h=mh 6 圆

(1) 圆的认识 平面上的一种曲线图形。

圆中心的一点叫做圆心。一般用字母o表示。

半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。在同一个圆里,有无数条半径,每条半径的长度都相等。 通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。 同一个圆里有无数条直径,所有的直径都相等。 同一个圆里,直径等于两个半径的长度,即d=2r。 圆的大小由半径决定。 圆有无数条对称轴。 (2)圆的画法

把圆规的两脚分开,定好两脚间的距离(即半径); 把有针尖的一只脚固定在一点(即圆心)上; 把装有铅笔尖的一只脚旋转一周,就画出一个圆。 (3) 圆的周长

围成圆的曲线的长叫做圆的周长。

把圆的周长和直径的比值叫做圆周率。用字母∏表示。 (4) 圆的面积

圆所占平面的大小叫做圆的面积。

(5)计算公式 :d=2r r=12d C=πd c=2πr 7扇形

S=πr² (1) 扇形的认识

一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。 圆上AB两点之间的部分叫做弧,读作“弧AB”。 顶点在圆心的角叫做圆心角。

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。 扇形有一条对称轴。 (2) 计算公式: s=n360πr² 8环形

(1) 特征 : 由两个半径不相等的同心圆相减而成,有无数条对称轴。 (2) 计算公式 : S=π(R² - r² ) 9轴对称图形 (1) 特征

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

正方形有4条对称轴, 长方形有2条对称轴。 等腰三角形有2条对称轴,等边三角形有3条对称轴。 等腰梯形有一条对称轴,圆有无数条对称轴。 菱形有4条对称轴,扇形有一条对称轴。

三 立体图形

(一)长方体

1 特征:

六个面都是长方形(有时有两个相对的面是正方形)。 相对的面面积相等,12条棱相对的4条棱长度相等。 有8个顶点。

相交于一个顶点的三条棱的长度分别叫做长、宽、高。 两个面相交的边叫做棱。 三条棱相交的点叫做顶点。

把长方体放在桌面上,最多只能看到三个面。 长方体或者正方体6个面的总面积,叫做它的表面积。

2 计算公式: S=2(ab+ah+bh) V=sh V=abh

(二)正方体

1 特征:

六个面都是正方形 六个面的面积相等 12条棱,棱长都相等 有8个顶点

正方体可以看作特殊的长方体 2 计算公式 : S表=6a² V=a³

(三)圆柱

1圆柱的认识

圆柱的上下两个面叫做底面。 圆柱有一个曲面叫做侧面。 圆柱两个底面之间的距离叫做高 。

进一法:实际中,使用的材料都要比计算的结果多一些 ,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。 2计算公式 : S侧=ch S表=S侧+S底×2 V=S底×h

(四)圆锥

1 圆锥的认识 :

圆锥的底面是个圆,圆锥的侧面是个曲面。 从圆锥的顶点到底面圆心的距离是圆锥的高。

测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。 把圆锥的侧面展开得到一个扇形。 2计算公式 : V=13S底×h

(五)球

1 认识

球的表面是一个曲面,这个曲面叫做球面。 球和圆类似,也有一个球心,用O表示。

从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。

通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。 2 计算公式 : d=2r

(六)图形与方位

一 .图形的变换

图形变换的基本方式是平移、对称、旋转。 其中只是改变原图形位置的变换是平移、旋转

对称点是关于一条直线对称的点 (对称点一般用于轴对称) 对应点是一个图形经变换后,变换后的的图形与变换前的图形位置相同的点

(对应点一般用于平移和旋转)

1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。

2.旋转:在平面内,将一个图形绕一定点沿某个方向转动一个角度,这样的图形运动称为旋转。旋转不改变图形的形状和大小。

3.对称:两个图形,如果沿着某一条直线对折后,他们能完全重合,那么这两个图形成轴对称;如果某一个图形沿某直线折叠能够互相重合,那么这个图形就是轴对称图形。

二 .观查物体

我们在日常生活中接触到的大部分立体图形不是对称的,从各个角度看到的形状也是不同的。要用平面图形表示出立体图形的形状,就需要从各个不同的方向去观查物体。

三 .确定方位

1.方向:东、南、西、北、东北、东南、西南、西北、上、下、左、右、前、后等。 2.位置:人或物体在空间中的位置及人与人、人与物体、物体与物体在空间中的位置关系,一般可以用第几个加以说明,也可以利用直角坐标系把平面上的点与数对应起来,以确定平面上点的位置。

统计与概率

一 统计表 (一)意义

*把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格叫做统计表

(二)组成部分

* 一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。

(三)种类

* 单式统计表:只含有一个项目的统计表。

* 复式统计表:含有两个或两个以上统计项目的统计表。

* 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。

(四)制作步骤

1搜集数据 2整理数据:

要根据制表的目的和统计的内容,对数据进行分类。 3设计草表:

要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。 4 正式制表:

把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。

二 统计图 (一)意义

* 用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。

(二)分类

1 条形统计图

用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。

优点:很容易看出各种数量的多少。

注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定;

复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

制作条形统计图的一般步骤:

(1)根据图纸的大小,画出两条互相垂直的射线。

(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。

(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。 (4)按照数据的大小画出长短不同的直条,并注明数量。 2 折线统计图

用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。 制作折线统计图的一般步骤:

(1)根据图纸的大小,画出两条互相垂直的射线。

(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。

(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。 (4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。 3扇形统计图

用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。 优点:很清楚地表示出各部分同总数之间的关系。 制扇形统计图的一般步骤:

(1)先算出各部分数量占总量的百分之几。 (2)再算出表示各部分数量的扇形的圆心角度数。

(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。 (4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。

(三) 可能性

1.可能性

无论在什么情况下都会发生的事件,是“一定”会发生的事件;在任何情况下都不会发生的

事件,是“不可能”发生的事件;在某种情况下会发生,而在其他情况下不会发生的事件,是“可能”发生的事件。

2.可能性的大小

在可能发生的事件中,如果出现该事件的情况教多,我们就说该事件发生的可能性较大;如果出现该事件的情况较少,我们就说该事件发生的可能性较小。

3.游戏规则的公平性

公平性就是只参与游戏活动的每一个对象获胜的可能性是相等的。

小学六年级数学应用题汇总:公因公倍问题

需要用公因数、公倍数来解答的应用题叫做公因数、公倍数问题。 【数量关系】绝大多数要用最大公因数、最小公倍数来解答。

【解题思路和方法】先确定题目中要用最大公因数或者最小公倍数,再求出答案。最大公因数和最小公倍数的求法,最常用的是“短除法”。

例1、一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?

解:硬纸板的长和宽的最大公因数就是所求的边长。 60和56的最大公因数是4。 答:正方形的边长是4厘米。

例2、甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?

解:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。36、30、48的最小公倍数是720。 答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。

例3、一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?

解:相邻两树的间距应是60、72、96、84的公因数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公因数12。 所以,至少应植树(60+72+96+84)÷12=26(棵) 答:至少要植26棵树。

例4、一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。

解:如果从总数中取出1个,余下的总数便是4、5、6的公倍数。因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为 60×3+1=181(个)

答:棋子的总数是181个。

小学六年级数学应用题汇总:行船问题

行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。 【数量关系】

(顺水速度+逆水速度)÷2=船速 (顺水速度-逆水速度)÷2=水速

顺水速=船速×2-逆水速=逆水速+水速×2 逆水速=船速×2-顺水速=顺水速-水速×2

【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1、一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

解:由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)

船的逆水速为25-15=10(千米)

船逆水行这段路程的时间为320÷10=32(小时) 答:这只船逆水行这段路程需用32小时。

例2、甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?

解:由题意得甲船速+水速=360÷10=36 甲船速-水速=360÷18=20 可见(36-20)相当于水速的2倍, 所以,水速为每小时(36-20)÷2=8(千米)

又因为,乙船速-水速=360÷15, 所以,乙船速为360÷15+8=32(千米) 乙船顺水速为32+8=40(千米) 所以,乙船顺水航行360千米需要 360÷40=9(小时)

答:乙船返回原地需要9小时。

例3、一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时? 解:这道题可以按照流水问题来解答。 (1)两城相距多少千米? (576-24)×3=1656(千米) (2)顺风飞回需要多少小时? 1656÷(576+24)=2。76(小时)

列成综合算式[(576-24)×3]÷(576+24)=2.76(小时) 答:飞机顺风飞回需要2.76小时。

小学六年级数学应用题汇总:工程问题

工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

工作量=工作效率×工作时间 工作时间=工作量÷工作效率

工作时间=总工作量÷(甲工作效率+乙工作效率)

【解题思路和方法】变通后可以利用上述数量关系的公式。

例1、一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

解:题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。

由于甲队独做需10天完成,那么每天完成这项工程的1/10; 乙队单独做需15天完成,每天完成这项工程的1/15; 两队合做,每天可以完成这项工程的(1/10+1/15)。 由此可以列出算式:1÷(1/10+1/15)=1÷1/6=6(天) 答:两队合做需要6天完成。

例2、一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

解一:设总工作量为1,则甲每小时完成16,乙每小时完成18,甲比乙每小时多完成(16-18),二人合做时每小时完成(1/6+1/8)。

因为二人合做需要[1÷(16+18)]小时,这个时间内,甲比乙多做24个零件,所以 (1)每小时甲比乙多做多少零件? 24÷[1÷(16+18)]=7(个) (2)这批零件共有多少个? 7÷(16-18)=168(个)

答:这批零件共有168个。

解二:上面这道题还可以用另一种方法计算:

两人合做,完成任务时甲乙的工作量之比为16∶18=4∶3 由此可知,甲比乙多完成总工作量的4 -34+3=17 所以,这批零件共有24÷17=168(个)

例3、一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

解:必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是 60÷12=560÷10=660÷15=4

因此余下的工作量由乙丙合做还需要 (60-5×2)÷(6+4)=5(小时) 答:还需要5小时才能完成。

例4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

解:注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。

只要设某一个量为单位1,其余两个量便可由条件推出。

我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知

每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1

即一个排水管与每个进水管的工作效率相同。由此可知 一池水的总工作量为1×4×5-1×5=15

又因为在2小时内,每个进水管的注水量为1×2, 所以,2小时内注满一池水

至少需要多少个进水管?(15+1×2)÷(1×2)=8。5≈9(个) 答:至少需要9个进水管。

小学六年级数学应用题汇总:正反比例问题

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

正反比例问题与前面讲过的倍比问题基本类似。

例1、修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

解:由条件知,公路总长不变。

原已修长度∶总长度=1∶(1+3)=1∶4=3∶12 现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)

答:这条公路总长3600米。

例2、张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题? 解:做题效率一定,做题数量与做题时间成正比例关系 设91分钟可以做X应用题则有28∶4=91∶X 28X=91×4X=91×4÷28X=13 答:91分钟可以做13道应用题。

例3、孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

解:书的页数一定,每天看的页数与需要的天数成反比例关系 设X天可以看完,就有24∶36=X∶15 36X=24×15X=10 答:10天就可以看完。

小学六年级数学应用题汇总:按比例分配问题

所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和

【解题思路和方法】先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

例1、学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵? 解:总份数为47+48+45=140

一班植树560×47140=188(棵) 二班植树560×48140=192(棵) 三班植树560×45140=180(棵) 答:一、二、三班分别植树188棵、192棵、180棵。

例2、用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米? 解:3+4+5=12 60×312=15(厘米) 60×412=20(厘米) 60×512=25(厘米) 答:三角形三条边的长分别是15厘米、20厘米、25厘米。

例3、从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的12,二儿子分总数的13,三儿子分总数的19,并规定不许把羊宰割分,求三个儿子各分多少只羊。

解:如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到

12∶13∶19=9∶6∶2

9+6+2=17 17×917=9(只) 17×617=6(只) 17×217=2(只) 答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊

小学六年级数学应用题汇总:方阵问题

将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。 【数量关系】

(1)方阵每边人数与四周人数的关系: 四周人数=(每边人数-1)×4 每边人数=四周人数÷4+1 (2)方阵总人数的求法:

实心方阵:总人数=每边人数×每边人数

空心方阵:总人数=(最外层每边人数-空心方阵的层数)×空心方阵的层数×4 内层总人数=最外层总人数-层数×4

(3)若将空心方阵分成四个相等的矩形计算,则: 总人数=(每边人数-层数)×层数×4

【解题思路和方法】方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。

例1、在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?

解:22×22=484(人)

答:参加体操表演的同学一共有484人。

例2、有一个3层中空方阵,最外边一层有10人,求全方阵的人数。 解:10-(10-3×2)=84(人) 答:全方阵84人。

例3、有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?

解:(1)中空方阵外层每边人数=52÷4+1=14(人) (2)中空方阵内层每边人数=28÷4-1=6(人) (3)中空方阵的总人数=14×14-6×6=160(人) 答:这队学生共160人。

例4、一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?

解:(1)纵横方向各增加一层所需棋子数=4+9=13(只) (2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只) (3)原有棋子数=7×7-9=40(只) 答:棋子有40只。

例5、有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?

解:第一种方法:1+2+3+4+5=15(棵) 第二种方法:(5+1)×5÷2=15(棵) 答:这个三角形树林一共有15棵树。

小学六年级数学应用题汇总:追及问题

两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。 【数量关系】

追及时间=追及路程÷(快速-慢速) 追及路程=(快速-慢速)×追及时间

【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1、好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

解:(1)劣马先走12天能走多少千米?75×12=900(千米) (2)好马几天追上劣马?900÷(120-75)=20(天) 列成综合算式75×12÷(120-75)=900÷45=20(天) 答:好马20天能追上劣马。

例2、小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

解:小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒, 所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米) 答:小亮的速度是每秒3米。

例3、我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

解:敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。由此推知

追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时) 答:解放军在11小时后可以追上敌人。

例4、一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

解:这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间, 这个时间为16×2÷(48-40)=4(小时) 所以两站间的距离为(48+40)×4=352(千米)

列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米) 答:甲乙两站的距离是352千米。

例5、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远? 解:要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,

那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟) 家离学校的距离为90×12-180=900(米) 答:家离学校有900米远。

例6、孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。

解:手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。

如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。 所以步行1千米所用时间为1÷[9-(10-5)]=0.25(小时)=15(分钟) 跑步1千米所用时间为15-[9-(10-5)]=11(分钟) 跑步速度为每小时1÷11/60=5.5(千米) 答:孙亮跑步速度为每小时5.5千米。

小学六年级数学应用题汇总:倍比问题

有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。 【数量关系】 总量÷一个数量=倍数 另一个数量×倍数=另一总量

【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

例1、100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少? 解:(1)3700千克是100千克的多少倍?3700÷100=37(倍) (2)可以榨油多少千克?40×37=1480(千克) 列成综合算式40×(3700÷100)=1480(千克) 答:可以榨油1480千克。

例2、今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

解:(1)48000名是300名的多少倍?48000÷300=160(倍) (2)共植树多少棵?400×160=64000(棵)

列成综合算式400×(48000÷300)=64000(棵) 答:全县48000名师生共植树64000棵。

例3、凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元? 解:(1)800亩是4亩的几倍?800÷4=200(倍) (2)800亩收入多少元?11111×200=2222200(元) (3)16000亩是800亩的几倍?16000÷800=20(倍) (4)16000亩收入多少元?2222200×20=44444000(元)

答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元

小学六年级数学应用题汇总:溶液浓度问题

在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。 【数量关系】 溶液=溶剂+溶质 浓度=溶质÷溶液×100%

【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1、爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?

解:(1)需要加水多少克?50×16%÷10%-50=30(克) (2)需要加糖多少克?50×(1-16%)÷(1-30%)-50=10(克) 答:(1)需要加水30克,(2)需要加糖10克。

例2、要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克? 解:假设全用30%的糖水溶液,那么含糖量就会多出 600×(30%-25%)=30(克) 这是因为30%的糖水多用了。

于是,我们设想在保证总重量600克不变的情况下,用15%的溶液来“换掉”一部分30%的溶液。 这样,每“换掉”100克,就会减少糖100×(30%-15%)=15(克)所以需要“换掉”30%的溶液(即“换上”15%的溶液)100×(30÷15)=200(克)

由此可知,需要15%的溶液200克。 需要30%的溶液600-200=400(克)

答:需要15%的糖水溶液200克,需要30%的糖水400克。

小学六年级数学应用题汇总:最值问题

科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。 【数量关系】一般是求最大值或最小值。

【解题思路和方法】按照题目的要求,求出最大值或最小值。

例1、在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?

解:先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。这样做,用的时间最少,为9分钟。 答:最少需要9分钟。

例2、在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少? 解:我们采用尝试比较的方法来解答。

集中到1号场总费用为1×200×10+1×400×40=18000(元) 集中到2号场总费用为1×100×10+1×400×30=13000(元)

集中到3号场总费用为1×100×20+1×200×10+1×400×10=12000(元) 集中到4号场总费用为1×100×30+1×200×20+1×400×10=11000(元) 集中到5号场总费用为1×100×40+1×200×30=10000(元) 经过比较,显然,集中到5号煤场费用最少。 答:集中到5号煤场费用最少。

小学六年级数学应用题汇总:时钟问题

就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。 时钟问题可与追及问题相类比。

【数量关系】分针的速度是时针的12倍,二者的速度差为1112。 通常按追及问题来对待,也可以按差倍问题来计算。 【解题思路和方法】变通为“追及问题”后可以直接利用公式。 例1、从时针指向4点开始,再经过多少分钟时针正好与分针重合?

解:钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走560=1112格。

每分钟分针比时针多走(1-112)=1112格。4点整,时针在前,分针在后,两针相距20格。 所以分针追上时针的时间为20÷(1-112)≈22(分) 答:再经过22分钟时针正好与分针重合。

例2、四点和五点之间,时针和分针在什么时候成直角?

解:钟面上有60格,它的14是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。

四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5×4-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×4+15)格。 再根据1分钟分针比时针多走(1-1112)格就可以求出二针成直角的时间。 (5×4-15)÷(1-1112)≈6(分) (5×4+15)÷(1-1112)≈38(分)

答:4点06分及4点38分时两针成直角。 例3、六点与七点之间什么时候时针与分针重合?

解:六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。

(5×6)÷(1-1112)≈33(分)

答:6点33分的时候分针与时针重合。

小学六年级数学应用题汇总:列车问题

这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。 【数量关系】

火车过桥:过桥时间=(车长+桥长)÷车速

火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速) 火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)

【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1、一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?

解:火车3分钟所行的路程,就是桥长与火车车身长度的和。 (1)火车3分钟行多少米?900×3=2700(米) (2)这列火车长多少米?2700-2400=300(米) 列成综合算式900×3-2400=300(米) 答:这列火车长300米。

例2、一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?

解:火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×125)米,这段路程就是(200米+桥长), 所以,桥长为8×125-200=800(米) 答:大桥的长度是800米。

例3、一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?

解从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米, 因此,所求的时间为(225+140)÷(22-17)=73(秒) 答:需要73秒。

例4、一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?

解:如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。 150÷(22+3)=6(秒)

答:火车从工人身旁驶过需要6秒钟。

例5、一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?

解:车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在(88-58)秒的时间内行驶了(2000-1250)米的路程,

因此,火车的车速为每秒(2000-1250)÷(88-58)=25(米) 进而可知,车长和桥长的和为(25×58)米,

因此,车长为25×58-1250=200(米)

答:这列火车的车速是每秒25米,车身长200米。

小学六年级数学应用题汇总:年龄问题

这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

【解题思路和方法】可以利用“差倍问题”的解题思路和方法。 ①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的。 常用的计算公式是:

成倍时小的年龄=大小年龄之差÷(倍数-1) 几年前的年龄=小的现年-成倍数时小的年龄 几年后的年龄=成倍时小的年龄-小的现在年龄

例1、爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢? 解:35÷5=7(倍) (35+1)÷(5+1)=6(倍)

答:今年爸爸的年龄是亮亮的7倍, 明年爸爸的年龄是亮亮的6倍。

例2、母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍? 解:(1)母亲比女儿的年龄大多少岁?37-7=30(岁) (2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年) 列成综合算式(37-7)÷(4-1)-7=3(年) 答:3年后母亲的年龄是女儿的4倍。

例3、3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁? 解:今年父子的年龄和应该比3年前增加(3×2)岁, 今年二人的年龄和为49+3×2=55(岁)

把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为55÷(4+1)=11(岁)

今年父亲年龄为11×4=44(岁)

答:今年父亲年龄是44岁,儿子年龄是11岁。

因篇幅问题不能全部显示,请点此查看更多更全内容