2020—2021年人教版九年级数学上册期末模拟考试(及答案)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.﹣6的倒数是( )
1A.﹣
61B.
6C.﹣6 D.6
2.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则
a的值为( ) A.﹣3
B.﹣5
C.1或﹣3
D.1或﹣5
3.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A.120元
B.100元
C.80元
D.60元
524.已知整式xx的值为6,则整式2x2-5x+6的值为( )
2A.9 B.12 C.18 D.24
5.下列运算正确的是( ) A.a2a2a4
B.a3a4a12
C.(a3)4a12
D.(ab)2ab2
6.把函数y(x1)22的图象向右平移1个单位长度,平移后图象的函数解析式为( ) A.yx22 C.y(x2)22
B.y(x1)21 D.y(x1)23
7.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )
1 / 7
A.80°
B.70°
C.85°
D.75°
8.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC5cm,CD8cm,则
AE( )
A.8cm B.5cm C.3cm D.2cm
9.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
10.在同一坐标系中,一次函数ymxn2与二次函数yx2m的图象可能是( ).
A. B.C.D.
二、填空题(本大题共6小题,每小题3分,共18分)
01.计算:2(3)_____________.
2 / 7
2.分解因式:a3-a=___________
3.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为__________.
4.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为__________.
5.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_______. 6.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AHBC于点
H,已知BO=4,S菱形ABCD=24,则AH__________.
三、解答题(本大题共6小题,共72分)
x31 1.解方程:
x1(x1)(x2)
2.关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2. (1)求m的取值范围.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F
3 / 7
(1)求证:△AEF≌△DEB; (2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF 的面积.
4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.
(1)求y与x之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
5.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
4 / 7
(1)此次共调查了 名学生; (2)将条形统计图补充完整;
(3)图2中“小说类”所在扇形的圆心角为 度;
(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.
6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题: (1)A,B两种书包每个进价各是多少元?
(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B种书包各有几个?
5 / 7
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、A 2、A 3、C 4、C 5、C 6、C 7、A 8、A 9、A 10、D
二、填空题(本大题共6小题,每小题3分,共18分)
1、3
2、a(a1)(a1) 3、﹣3 4、72°
15、2x(x﹣1)=21
246、5
三、解答题(本大题共6小题,共72分)
1、原方程无解. 2、(1)m≤
13. 4(2)m=-3.
3、(1)略;(2)略;(3)10.
4、(1)y10x700;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
5、(1)200;(2)补图见解析;(3)12;(4)300人.
6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有
6 / 7
个,样品中A种书包有2个,B种书包有2个.
7 / 7
因篇幅问题不能全部显示,请点此查看更多更全内容