您的当前位置:首页圆柱圆锥练习

圆柱圆锥练习

2021-11-02 来源:爱问旅游网
 圆柱圆锥练习

一、 面的旋转

1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。 2.圆柱的特征:

(1)圆柱的两个底面是半径相等的两个圆。 (2)两个底面间的距离叫做圆柱的高。 (3)圆柱有无数条高,且高的长度都相等。 3.圆锥的特征:

(1)圆锥的底面是一个圆。 (2)圆锥的侧面是一个曲面。 (3)圆锥只有一条高。

二、 圆柱的表面积

1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。 (如果不是沿高剪开,有可能还会是平行四边形) 2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。 3.圆柱的侧面积公式的应用:

(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch; (2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh; (3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh

4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:

S表=S侧+2S底

或S表=πdh+πd2/2=

2

或S表=2πrh+2πr

5.圆柱表面积的计算方法的特殊应用:

(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

三、 圆柱的体积

1. 圆柱的体积:一个圆柱所占空间的大小。

2. 圆柱的体积=底面积×高。如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。

3. 圆柱体积公式的应用:

(1) 计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。 (2) 已知圆柱的底面半径和高,求体积,可用公式:V=πr2h; (3) 已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h; (4) 已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;

圆柱形容器的容积=底面积×高,用字母表示是V=Sh。 5.圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。 四、 圆锥的体积

1. 圆锥只有一条高。

2. 圆锥的体积=1/3×底面积×高。

如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:1/3Sh 3. 圆锥体积公式的应用:

(1)求圆锥体积时,如果题中给出底面积和高这两个条件,可以直接运用“v= 1/3 Sh”

这一公式。

(2)求圆锥体积时,如果题中给出底面半径和高这两个条件,可以运用1/3πr²h (3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3π(d/2)

²h

(4)求圆锥体积时,如果题中给出底面周长和高这两个条件,可以运用1/3π(c/2r)

²h

一、填空题

1、一个圆柱,半径不变,高扩大到原来的3倍,体积扩大到原来的( )倍。 2、一个圆柱,半径扩大到原来的3倍,高不变,体积扩大到原来的( )倍。

3、一个圆柱,底面半径扩大到原来的2倍,高缩小到原来的的2倍,圆柱的体积就( )倍。

4、如果一个圆柱的侧面展开图是一个正方形,那么这个圆柱的高是圆柱底面半径的( )倍。 5、把一个高是10分米的圆柱截成两个圆柱,表面积增加了0.36平方米,原来圆柱体的体积是( )立方米。

8、一个长方形硬纸板长6厘米,宽5厘米,一纸板的长为轴旋转一周得到的立体图形的体积是( )立方厘米。

9、一个圆柱体的高是5厘米,若高增加3厘米,圆柱的表面积就增加37.68,原来圆柱体的体积是( )立方厘米。

10、一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是 ( )厘米。

11、等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是( )立方米,圆锥的体积是( )立方米。

12、一根长2米的圆木,截成4段同样大小的圆柱后,表面积增加48平方厘米,这根圆木原来的体积是( )立方厘米。

13、圆柱的底面半径是1厘米,体积是6.28立方厘米,这个圆柱的高是( )厘米。

15、一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是( )分米。

16、一个圆锥的底面半径是1厘米,体积是6.28立方厘米,这个圆锥的高是( )厘米. 二、应用题

1、用橡皮泥做一个圆柱形学具,作出的圆柱底面直径是6厘米,高是8厘米,如果再做一个长方体纸盒(6个面),使橡皮泥圆柱正好能装进去,至少需要多少平方厘米硬纸

2、一个无盖的圆柱形水桶,底面直径20厘米,高30厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)

3、一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺4厘米厚,可以铺多少米长?

4、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?

5、一个没有盖的圆柱形铁皮桶,底面周长是18.84分米,高是12分米,做这个水桶大约需要多少平方分米的铁皮?(用进一法保留整十数)

6、一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的4/5 后,还剩12升汽油。如果这个油桶的内底面积是10平方分米,油桶的高是多少分米?

7、一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的2/5 后,还剩12升汽油。如果这个油桶的内底面积是10平方分米,油桶的高是多少分米?

8、一个圆锥与一个圆柱的底面积相等。已知圆锥与圆柱的体积的比是 1:6,圆锥的高是4.8厘米,圆柱的高是多少厘米?

9、把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高?

10、把一个底面半径是6厘米,高是10厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是5厘米的圆柱形容器里,求圆柱形容器内水面的高度?

11、把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的高。

12、把一个高是6分米的圆柱,沿着底面直径竖直切开,平均分成两半,表面积增加48平方分米。原来这个圆柱的体积是多少立方分米?、

13、把两个完全一样的半个圆柱合并成一个圆柱,底面半径是3厘米,表面积减少72平方厘米。现在这个圆柱的侧面积是多少平方厘米?

14、把3完全一样的圆柱,连接成一个大圆柱,长9厘米,表面积减少12.56平方分米。原来每个圆柱的体积是多少立方厘米?

15、在一只底面半径为10厘米的圆柱形玻璃容器中,水深8厘米,要在容器中放入长和宽都是8厘米,高15厘米的一块铁块。(1)如果把铁块横放在水中水面上升多少厘米?

(2)如果把铁块竖放在水中,水面上升多少厘米?

16、底面直径是20厘米的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方厘米,原来圆钢的体积是多少立方厘米?

因篇幅问题不能全部显示,请点此查看更多更全内容