发布网友 发布时间:2022-04-24 06:17
共1个回答
热心网友 时间:2023-10-08 18:37
王杰 顾忆
(中国石化石油勘探开发研究院无锡石油地质研究所,无锡214151)
摘要 塔河油田奥陶系与TS1井天然气主要以烃类气体为主,甲烷占绝对优势,塔河油田东部奥陶系天然气为干气,其余区块天然气为典型湿气,而TS1井天然气则为典型干气。塔河油田奥陶系与TS1井天然气具有相同母质来源,都为典型油型气,奥陶系天然气为不同成熟度油型气的复合,是干酪根降解气,而TS1井天然气为原油裂解气,塔河油田奥陶系与TS1井二氧化碳气体都为碳酸盐岩热变质作用产生。该油田奥陶系天然气的生成具有多阶连续的特征,既有反映成熟阶段的正常原油伴生气和较高成熟阶段的凝析油伴生气,还有反映高过成熟阶段的高温裂解气。TS1井天然气成熟度总体上高于塔河油田主体区天然气成熟度,而低于塔河油田东部评价1区和阿克库勒S14井和S18井天然气成熟度。
关键词 塔河油田 TS1井 同位素倒转 碳氢同位素 稀有气体同位素 成因类型
Geochemistry and Genetic Type of Natural Gas in TS1 Well and Ordovician System in Tahe Oilfield,Tarim Basin,Northwest China
WANG Jie,GU Yi
(Wuxi Research Institute of Petroleum Geology,SINOPEC,Wuxi 214151)
Abstract In TS1 well and Ordovician system of Tahe oilfield,the hydrocarbon gases in natural gas occupy a great majority in volume,and methane occurs absolutely dominant.The natural gases belong to typical dry gas in the eastern of Tahe oilfield,and belong to wet gas in the others areas.The natural gas of TS1 well is typically dry gas.The natural gases of Ordovician system in Tahe oilfield and TS1 well originate from the same source rocks,which belonging to typical oil type gas.The Ordovician system natural gases in Tahe oilfield are the complex of the different maturity stage gas,which contains kerogen cracking gas.But the natural gases in TS1 well remain with oil cracking gas.Carbon dioxide is proced by the thermal metamorphose of carbonate rocks in Tahe oilfield and TS1 well.In Tahe oilfield,the generating natural gas of different stages takes on continuous character,which contain petroleum associated gas of the maturity stage and condensate associated gas of the relatively high maturity stage,as well as cracking gas of high-over maturity stage.The natural gas maturity of TS1 well is bigger than that of main areas in Tahe oilfield and lower than the east part of Tahe oilfield.
Key words Tahe oilfield TS1 well isotope reverse carbon and hydrogen isotope rare gas isotopegenetic feature
对于天然气成因判别,前人已做了大量卓有成效的工作,形成了比较可行的方法和指标[1~4]。天然气藏的天然气成因类型取决于气中占绝对优势组分的成因,天然气成因研究和气源探讨为天然气资源评价和勘探奠定了基础。前人对塔里木盆地宏观油气地球化学和塔河油田及其外围地区原油的地球化学特征进行了大量的研究,取得了一系列的研究成果[5~8],限于篇幅,不在文中赘述。但到目前为止,却未见塔河油田天然气的地球化学特征及其成因类型的系统研究成果见诸于报道。本文对塔河油田及其外围以及塔河深层TS1井天然气组分、碳氢同位素、稀有气体同位素和轻烃指纹特征进行了综合分析,首次在塔河地区应用了天然气的CO2碳同位素与稀有气体同位素分析,对该区奥陶系和深层天然气地球化学特征及其成因类型进行了系统研究,为深层天然气的研究和勘探提供理论依据。
1 地质背景
塔河油田位于塔里木盆地沙雅隆起阿克库勒凸起西南部斜坡,西为哈拉哈塘凹陷,东邻草湖凹陷,北为雅克拉断凸,南接顺托果勒隆起和满加尔坳陷,面积约750km2。阿克库勒凸起为前震旦系变质基底上发育起来的一个长期发展、经历了多期构造运动、变形叠加的古凸起,先后经历了加里东期、海西期、印支-燕山期及喜马拉雅期等多次构造运动,由于长期的抬升暴露风化剥蚀,使凸起大部分地区缺失中、上奥陶统及志留系—中、下泥盆统等,下奥陶统也遭受不同程度的剥蚀,上述地层主要分布在凸起南部、东部围斜地区[9]。塔河油田是我国迄今为止最大的海相烃源大型油田,勘探表明,塔河油田含油气层位有三叠系、石炭系与奥陶系,主要集中在奥陶系,特别在中、下奥陶统碳酸盐岩中岩溶缝洞型储层最为发育,为该油田的最主要产层。
阿克库勒凸起在加里东中晚期形成雏形,海西早期受区域性挤压抬升形成向西南倾伏的NE向展布的大型鼻凸,经过海西晚期运动、印支-喜马拉雅运动的进一步改造定型,为油气运移有利指向区。为了加快塔河油田油气勘探步伐,进一步探索下古生界储层发育特征及油气分布规律,实现“塔河油田下面找塔河”的油气勘探目标,选择寒武系碳酸盐岩台地边缘建隆圈闭,部署了TS1井。TS1井位于塔河油田2区,钻深达8408m,揭穿建隆体1后完钻,完钻层位为上寒武统下丘里塔格群(
),通过对TS1井钻探成果的分析,揭示了塔河油田深层生储盖圈保条件以及油气成藏规律。
2 天然气组分特征
塔河油田奥陶系天然气主要以溶解气、伴生气或凝析气的形式出现。天然气组分包括:烃类气体,CO2,N2,H2S。天然气的组分主要以烃类气体为主,占气体总体积的.2%~98.6%,平均为95.2%;非烃气体以CO2和N2为主,含有少量H2S气体。烃类气体中甲烷占绝对优势,含量为49.8%~93.6%,平均为75.7%;绝大部分天然气重烃含量较高,占3.8%~39.4%,平均为18.6%。塔河油区天然气干燥系数(C1/∑C)介于0.56~0.96之间,平均为0.80,整体上属于典型的湿气,塔河油田外围的阿克库勒地区S14井和S60井天然气干燥系数分别为0.96和0.93,属于热演化程度较高的干气类型;另外塔河油田东部评价1区的天然气,根据其甲烷碳同位素组成来看,也为典型干气。其余天然气的干燥系数介于0.56~0.之间,属于典型的湿气。在塔河油田奥陶系天然气中,非烃气体为N2,CO2,H2S,非烃气体含量不高,为1.38%~10.83%,其中N2含量为0~8.9%,CO2含量为0.09%~8.39%,硫化氢含量分布范围较宽,从不含硫化氢到高含硫化氢均有分布。油田西部的T740井、T751井和T738井一带硫化氢含量较高,在20.2~108.8g/m3之间,属于中—高含硫气区。在此区域之外只有T804(K)井、S91井一带为含硫化氢天然气,其余地区从中—高含硫区到低含硫区的变化非常快,在紧邻中—高含硫区域的其他井硫化氢含量很快衰减到低于1g/m3,为低含硫化氢天然气。
TS1井在井深7358m处上寒武统丘里塔格群(
)进行地层测试,产出少量天然气。由表1可见,在该层段采集了2个天然气样品,天然气组分主要以烃类气体为主,占总体积的96.9%和97.0%,其中甲烷在天然气组分中占绝对优势,含量分别为94.1%和93.9%;天然气中重烃含量分别为2.79%和3.11%。非烃气体中含有一定量的N2和CO2气体,2个样品中N2含量分别为2.81%和2.86%,CO2含量很低,为0.22%和0.21%。TS1井天然气干燥系数为0.97,属于热演化程度较高的典型干气。
表1 TS1井天然气组分和地球化学特征
由塔河油田奥陶系和TS1井天然气组分特征来看,二者都以烃类气体为主,其中甲烷占绝对优势,TS1井天然气中甲烷含量要高于塔河油田奥陶系所有天然气,重烃含量低于塔河油田奥陶系天然气;另外该油田东部评1区的天然气为典型干气,其余区块天然气为典型湿气,TS1井天然气干燥系数为0.97,说明TS1井天然气成熟度整体上要高于塔河油田奥陶系,二者处于不同演化阶段。
3 天然气碳、氢及稀有气体同位素组成
3.1 甲烷碳同位素组成
对于划分无机成因与有机成因甲烷碳同位素δ13C1的界限值,许多学者认识不一致。本文采用-30‰作为划分无机成因和有机成因甲烷δ13C1的界限值[10]。塔河油田奥陶系天然气中甲烷的碳同位素偏轻,分布在-50.8‰~-30.2‰之间,主要分布在-42.9‰~-38.4‰范围内,平均为-40.5‰。本区天然气δ13C1都小于-30‰,再结合其他指标,综合判断塔河油田奥陶系天然气甲烷为有机成因。
由图1可见,总体上天然气C1/∑C和C1/C2与δ13C1具有明显的正相关关系,即随着干燥系数和C1/C2增加,δ13C1值逐渐变大,说明该区天然气甲烷的碳同位素组成主要是受热演化程度的影响,表明天然气的碳同位素分馏效应主要受成熟作用的控制。
TS1井天然气甲烷碳同位素值分别为-38.6‰和-37.2‰,普遍重于塔河油田奥陶系天然气,这说明TS1井天然气热演化程度高于塔河油田奥陶系天然气。
3.2 重烃气的碳同位素组成
烷烃气碳同位素系列是指依烷烃气分子碳数顺序的碳同位素分布特征。有机成因烷烃气是指碳同位素值随烷烃气分子中碳数增加而增大,被称为正碳同位素系列,即δ13C1<δ13C2<δ13C3<δ13C4。而无机成因烷烃气碳同位素值则随烷烃气分子中碳数增加而减少,被称为负碳同位素系列,即δ13C1>δ13C2>δ13C3。不具有上述顺序的碳同位素系列,称同位素倒转或逆转。
图1 塔河油田奥陶系天然气C1/∑C 和C1/C2与δ13C1值相关关系
塔河油田奥陶系天然气总体上具有δ13C1<δ13C2<δ13C3<δ13C4的特征,呈明显正序列,为典型的有机成因。但塔河油田外围S73井和T913井以及塔河4区TK417井天然气具有δ13C1>δ13C2<δ13C3<δ13C4的异常序列(图2),根据烷烃气的碳同位素组成特征和轻烃特征判断该区天然气为油型气,且具有相同来源,因此S73井和T913井以及TK417井天然气碳同位素组成的倒转现象可能为相同母质不同期次生成的气复合造成的,这与塔河区域地质以及周缘烃源热演化史是吻合的。由图2可见,塔河油田奥陶系天然气δ13C2-1值在-3.2‰~8.1‰之间,δ13C3-2值在0.1‰~6.4‰之间,δ13C4-3值在0.7‰~3.7‰之间,显然δ13C2-1,δ13C3-2,δ13C4-3值所处相对范围依次变小,并且范围相互重叠,说明塔河油田奥陶系天然气为不同成熟度油型气的复合,印证了上述的认识。
图2 塔河油田奥陶系与TS1井天然气碳同位素组成指纹分布图
TS1井天然气和塔河油田奥陶系天然气具有δ13C1<δ13C2<δ13C3<δ13C4的特征,呈明显正序列。据图2可见,TS1井天然气碳同位素类型曲线与塔河油田奥陶系天然气的类型曲线具有很好的一致性,说明TS1井天然气与塔河油田奥陶系天然气具有相同或相似的母质来源。
3.3 二氧化碳碳同位素组成
二氧化碳成因分为有机成因和无机成因两类,有机成因的CO2通常相对富集轻碳同位素,无机成因CO2一般相对富集重碳同位素。戴金星等[11,12]认为无机成因二氧化碳的
值大于-8,主要在-8~+3 区间内;在无机成因二氧化碳中,由碳酸盐岩变质成因的CO2其
值接近于碳酸盐岩的δ13C值,为0±3;火山-岩浆成因和幔源CO2其
值大多为-6±2。塔河油田奥陶系8个天然气样品的
值分布在-4.3~-0.7 之间(表2),结合稀有气体同位素R/Ra处于0.016~0.037判断,该区二氧化碳基本上为壳源成因,主要为碳酸盐岩热变质成因产生,笔者认为是由二叠系火山活动引起的热事件造成。目前,塔河油田已有百余口钻井钻遇二叠系火山岩,主要连片分布于阿克库勒凸起西南部,整体上阿克库勒凸起两翼厚、中间薄,由北向南、由东向西特别是向西南方向厚度逐渐增大。塔河地区火山岩确切形成时代限定在晚石炭世以后到早三叠世前,该地区火山活动有利于促进有机质热演化。
表2 塔河油田奥陶系与TS1井天然气地球化学特征
TS1井天然气中二氧化碳
值为-5.3,根据不同类型二氧化碳
值分布范围以及TS1井天然气伴生的He同位素值R/Ra为0.03,远小于1,说明塔深1井二氧化碳为碳酸盐岩变质成因。
3.4 天然气氢同位素组成
天然气氢同位素组成主要受4个方面因素的影响:①受源岩沉积环境和水介质条件影响;②受热演化程度影响,有机质随演化程度增加,天然气的δD1有变重趋势;③受母质特征的影响;④受外来氢源的影响,这种外来氢源有时可能对天然气的氢同位素组成起到关键性作用。天然气中的氢同位素组成虽然受母质特征和热演化程度的影响,但主要受源岩沉积环境和水介质条件的影响。
δD值序列倒转的原因主要有:①烷烃气受到细菌氧化的次生改造;②煤型气和油型气混合[13]。由表2可见,塔河10区TK827井、塔河2区TK235井和塔河8区T702B井等3口井天然气的氢同位素组成具有δD1<δD2<δD3<δD4的特征,其余5口井天然气呈现出δD1>δD2<δD3<δD4的规律。本区甲烷氢同位素的差异主要不是由沉积水介质条件变化引起的,而是由同一烃源岩中同一类型母质不同演化阶段的产物混合造成的(图3)。本文研究认为,造成天然气δD值序列倒转还有其他因素,在该区戴金星等[13]提出的因素不是造成δD值序列倒转的原因,部分天然气的甲烷氢同位素倒转主要是由于本区早期生成的油气遭受强烈的次生改造,再加上后期的高成熟油气充注混合造成的。其中又分两种情况:一是塔河地区部分天然气δ13C1和δ13C2值相近,且δD1和δD2值序列发生倒转,主要是由于不同成熟阶段油气混合造成,这可以从氢同位素类型曲线两阶段分布的特征得到印证,与碳同位素类型分布曲线一致,即主要为天然气的甲烷与乙烷存在不同的来源,显示了天然气具有两期充注、混合的特征;二是塔河地区部分天然气δ13C1和δ13C2值相差较大,且δD1和δD2值序列发生倒转,主要是早期生成的油气受水洗氧化次生改造的因素占主要地位造成。
图3 塔河油田奥陶系天然气组分参数与δD1值的关系
一般情况下,海相(或咸水)沉积有机质形成的天然气
大于-180‰,而陆相淡水沉积则是
小于-180‰[14]。而TS1井天然气δD值具有δD1<δD2<δD3<δD4的特征,为正序列,不具有倒转特征,而且δD1值都大于-180‰,为典型海相沉积环境。由图4可见,TS1井天然气氢同位素组成曲线和塔河油田奥陶系天然气氢同位素类型曲线具有相似的特征,具有相同的母质来源。
3.5 天然气稀有气体同位素组成
氦的两个稳定同位素分别为3He和4He,3He主要为元素合成时形成的核素,主要存在于地幔,而4He则主要是地球上自然放射性元素铀、钍α衰变的产物。天然气中氦的来源有3个,即大气氦、壳源氦和幔源氦。大气氦的3He/4He值(Ra)为1.40×10-6,地幔氦3He/4He取1.1×10-5[15],平均壳源氦的3He/4He值为(2~3)×10-8[16]。氩有3种稳定同位素36Ar和38Ar及40Ar,放射成因40Ar由40K衰变产生,36Ar主要是元素合成时形成的原始核素。大气40Ar/36Ar值为295.5;上地幔40Ar/36Ar值分布范围很广,从接近大气氩值的295.5到高达104;下地幔的40Ar/36Ar值则远低于上地幔,约为400。
图4 塔河奥陶系与TS1井天然气氢同位素类型曲线
塔河油田奥陶系天然气的氦同位素3He/4He值比较低,分布在(2.26~5.23)×10-8范围内,R/Ra的值分布在 0.016~0.037 内,平均值为 0.03(表2)。该区天然气的4 He/20Ne值比大气中的4He/20Ne值(0.326)大2~4个数量级,且40Ar/36Ar值明显地大于大气氩值。因此大气成因氦的份额可忽略,仅需讨论壳、幔两种来源的氦,用壳-幔二元复合模式计算出天然气中氦有0.02%~0.29%幔源氦的贡献,壳源氦在天然气氦中占绝对优势,说明深部来源的幔源挥发分对天然气成分的影响很小,天然气为有机成因。TS1井天然气氦同位素3He/4He 值比较低,分别为4.1×10-8和4.3×10-8,R/Ra值为0.03,说明深部来源的幔源挥发分对TS1井天然气成分的影响很小。
4 天然气成因类型
4.1 天然气的稳定同位素
δ13C2和δ13C3值是区别油型气和煤型气的重要标志之一。国内研究者多以δ13C2=-28‰作为划分油型气和煤型气的标志,一般认为,油型气的δ13C3小于-25.5‰,煤成气的δ13C3大于-23.2‰。塔河油田奥陶系天然气δ13C2值为-42.9‰~-31.9‰,都小于-28‰,δ13C3值分布在-36.6‰~-31.4‰之间,属于典型油型气范畴。TS1井天然气δ13C2值分布在-38.1‰~-36.7‰之间,δ13C3值分布在-34.5‰~-33.3‰之间,属于典型油型气。所以不论从乙烷的碳同位素组成,还是丙烷的碳同位素组成来看,塔河油田奥陶系和TS1井天然气都为典型的油型气。
对于油型气而言,生物热催化过渡带气的δ13C1值为-55‰~-48‰,正常原油伴生气的δ13C1值为-48‰~-40‰,凝析油伴生气的δ13C1值为-40‰~-36‰,高温裂解气的δ13C1值大于-36‰。塔河油田外围S14井、S18井、S60井、S73井和T913井等于或大于-36‰,加之干燥系数大,为高温裂解气,其余气样为正常原油伴生气和凝析油伴生气(T740井气样除外),所以塔河油田奥陶系天然气的生成具有多阶连续特征,成熟度范围为从成熟阶段到过成熟阶段,既有反映成熟阶段的正常原油伴生气和较高成熟阶段的凝析油伴生气,还有反映高过成熟阶段的高温裂解气。
对TS1井天然气而言,若仅根据甲烷碳同位素组成为-38.6‰~-37.2‰判断,其天然气应为凝析油伴生气。根据沈平[17]等的油型气回归方程δ13C1≈21.72lgRo-43.3 计算,TS1井天然气相应源岩Ro为1.65%和1.91%,处于高成熟湿气-凝析油阶段,为凝析油伴生气。塔河油田除10区T740井天然气相应源岩Ro为0.45%外,其余天然气相应源岩Ro为0.7%~4.0%,处于成熟阶段—过成熟阶段。特别是位于塔河油田外围东部地区的T913井、S14井、S18井、S60井和S73井的δ13C1值相对较大,其相应Ro都大于2%,显示已达到过成熟阶段,与其干燥系数较高是一致的。
当母质类型一定时,天然气中甲烷的碳同位素组成主要受成熟度效应的控制,而乙烷的碳同位素组成则受母质继承效应的制约更为明显,因此,利用δ13C1与δ13C2相结合可有效地划分天然气成因类型。图5直观地反映了塔河油田奥陶系和TS1井天然气甲烷、乙烷碳同位素值的差异,塔河油区奥陶系天然气的甲烷碳同位素与乙烷碳同位素具有很好的线性关系,而且都属于典型的油型气范畴。TS1井天然气成熟度总体上高于塔河油田主体区天然气成熟度,而低于塔河油田东部评价1区和阿克库勒S14井和S18井天然气成熟度。
图5 塔河油田奥陶系和TS1井天然气δ13C1与δ13C2相关图
4.2 天然气组分
Behar等[18]在封闭热解系统中的模拟实验表明,油裂解气在ln(C1/C2)变化较小的情况下,ln(C2/C3)变化范围较大;而干酪根降解气在ln(C1/C2)变化较大的情况下,ln(C2/C3)变化较小。塔河地区奥陶系天然气ln(C2/C3)在-0.19~1.16之间,基本上变化不大,而ln(C1/C2)值变化较大,变化范围为1.51~3.82,具有干酪根裂解气的特征。由图6可见,塔河地区奥陶系天然气为典型干酪根降解气,而TS1井天然气则为典型原油裂解气。
图6 塔河油田奥陶系与TS1井天然气ln(C1/C2)与ln(C2/C3)相关图
虚线区为干酪根降解气的变化趋势和范围
4.3 天然气轻烃组成
胡国艺等[19]通过模拟实验对原油裂解气和干酪根降解气轻烃组成的研究表明,在C7轻烃组成中,原油裂解气中甲基环己烷/正庚烷和(2-甲基己烷+3-甲基己烷)/正己烷均明显高于干酪根裂解气,而且原油裂解气中甲基环己烷/正庚烷一般大于1.0,(2-甲基己烷+3-甲基己烷)/正己烷一般大于0.5,而干酪根裂解气则反之。应用上述指标对塔河地区奥陶系天然气成气过程判识,发现甲基环己烷/正庚烷比值在0.39~0.59 之间,均小于1;(2-甲基己烷+3-甲基己烷)/正己烷比值,除8个天然气样外均在0.18~0.5之间,表明塔河地区奥陶系天然气主要为干酪根裂解气。TS1井天然气甲基环己烷/正庚烷比值为0.93和1.93,大于1;(2-甲基己烷+3-甲基己烷)/正己烷比值也均大于0.5,表明TS1井天然气为原油裂解气。
脂族烃组成为某一碳数烃类中直链烃、支链烃和环烃组成的归一百分含量,不同沉积环境和母质类型源岩生成的天然气具有不同的脂族烃族组成特征。将天然气C5—C7轻烃馏分的各类烃类组成标在分别以正构烷烃、异构烷烃和环烷烃的百分含量为端元的三角图上,从图7可以看出,塔河油田奥陶系与TS1井天然气C5—C7轻烃组成的点分布在相同的范围内,具有相同的母质来源。塔河油田奥陶系与TS1井天然气C6—C7轻烃组成三角图上的点分布在相同的范围内(图7),充分显示塔河地区奥陶系天然气与TS1井天然气具有相同的母质来源。
5 结论
(1)塔河油田奥陶系天然气与TS1井天然气主要以烃类气体为主,其中甲烷占绝对优势,非烃气体含量较低。塔河油田东部奥陶系天然气为干气,其余属于典型的湿气;而TS1井天然气属于热演化程度较高的干气。
图7 塔河地区奥陶系天然气与TS1井天然气C5—C7和C6—C7轻烃组成
(2)塔河油田奥陶系天然气与TS1井天然气具有相同的母质来源。塔河油田奥陶系为腐泥型母质不同成熟度油型气复合的面貌,为干酪根降解气,天然气的生成具有多阶段连续的特征,既有反映成熟阶段正常原油伴生气和较高成熟阶段的凝析油伴生气,又有反映过成熟阶段的高温裂解气。TS1井天然气为典型油型气,属于原油裂解气,处于高成熟湿气-凝析油阶段。TS1井天然气成熟度总体上高于塔河油田主体区天然气成熟度,而低于塔河油田东部评价1区和阿克库勒S14井和S18井天然气成熟度。
(3)造成塔河地区奥陶系天然气碳氢同位素倒转的原因,主要是由于不同成熟度油型气的复合,再加上早期生成天然气遭受强烈次生改造形成。
参考文献
[1]陈践发,徐永昌,黄第藩.塔里木盆地东部地区天然气地球化学特征及成因探讨(之一)[J].沉积学报,2000,18(4):606~609.
[2]徐永昌.天然气中的幔源稀有气体[J].地学前缘,1996,3(3~4):63~70.
[3]徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994,97~106.
[4]沈平,徐永昌,王先彬等.气源岩和天然气地球化学特征及成气机理研究[M].兰州:甘肃科学技术出版社,1991:39~122.
[5]张水昌,梁狄刚,张宝民.塔里木盆地海相油气的生成[M].北京:石油工业出版社,2004,101~480.
[6]赵孟军,周兴熙,卢双舫.塔里木盆地天然气分布规律及勘探方向[M].北京:石油工业出版社,2002,100~220.
[7]顾忆,黄继文,邵志兵.塔河油田奥陶系油气地球化学特征与油气运移[J].石油实验地质,2003,25(6):746~750.
[8]顾忆,黄继文,马红强.塔河油区油气分布特点及其控制因素[J].中国西部油气地质,2006,2(1):19~25.
[9]康玉柱.塔里木盆地塔河大油田形成的地质条件及前景展望[J].中国地质,2003,30(3):315~319.
[10]戴金星,石昕,卫延召.无机成因油气论和无机成因的气田(藏)概略[J].石油学报,2001,22(6):5~10.
[11]戴金星,夏新宇,秦胜飞等.中国有机烷烃气碳同位素系列倒转的成因[J].石油与天然气地质,2003,24(1):2~6.
[12]戴金星.中国含油气盆地的无机成因及其气藏[J].天然气工业,1995,15(3):22~27.
[13]戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学,1993,3(2):1~40.
[14]Schoell M.The hydrogen and carbon isotope composition of methane from natural gases of various origins[J].Geochim.Cosmochim.Acta,1980,44:9~661.
[15]Lupton J E.Terrestrial inert gases-isotopic trace studies and clubs to primordial components[J].Annual Review Earth Plant Science,1983,11(5):371~414.
[16]Poreda R J,Jenden P D,Kaplan E R.Mantle helium in Sacramento basin natural gas wells[J].Geochim Cosmochim Acta,1986,65(5):2847~2853.
[17]沈平,徐永昌.中国陆相成因天然气同位素组成特征[J].地球化学,1991,20(2):144~152.
[18]Behar F,Kressman S,Rudkiewicz J L.Experimental simulation in confined system and kinetic modeling of kerogen and oil cracking[M].//Eckardt C B,Maxwell J R,Lartern S R.Advances in Organic Geochemistry,1991,173~1.
[19]胡国艺,肖中尧,罗霞等.两种裂解气中轻烃组成差异性及其应用[J].天然气工业,2005,25(9):23~25.